205 research outputs found

    Viable models with non-universal gaugino mediated supersymmetry breaking

    Full text link
    Recently, extra dimensional SUSY GUT models have been proposed in which compactification of the extra dimension(s) leads to a breakdown of the gauge symmetry and/or supersymmetry. We examine a particular class of higher-dimensional models exhibiting supersymmetry and SU(5) or SO(10) GUT symmetry. SUSY breaking occurs on a hidden brane, and is communicated to the visible brane via gaugino mediation. Non-universal gaugino masses are developed at the compactification scale as a consequence of a restricted gauge symmetry on the hidden brane. In this case, the compactification scale is at or slightly below the GUT scale. We examine the parameter space of such models where gaugino masses are related due to a Pati-Salam symmetry on the hidden brane. We find limited but significant regions of model parameter space where a viable spectra of SUSY matter is generated. Our results are extended to the more general case of three independent gaugino masses; here we find that large parameter space regions open up for large values of the U(1) gaugino mass M_1. We also find the relic density of neutralinos for these models to be generally below expectations from cosmological observations, thus leaving room for hidden sector states to make up the bulk of cold dark matter. Finally, we evaluate the branching fraction BF(b -> s gamma) and muon anomalous magnetic moment a_\mu.Comment: 21 pages, 9 figure

    Diagnosing Spin at the LHC via Vector Boson Fusion

    Get PDF
    We propose a new technique for determining the spin of new massive particles that might be discovered at the Large Hadron Collider. The method relies on pair-production of the new particles in a kinematic regime where the vector boson fusion production mechanism is enhanced. For this regime, we show that the distribution of the leading jets as a function of their relative azimuthal angle can be used to distinguish spin-0 from spin-1/2 particles. We illustrate this effect by considering the particular cases of (i) strongly-interacting, stable particles and (ii) supersymmetric particles carrying color charge. We argue that this method should be applicable in a wide range of new physics scenarios.Comment: 5 pages, 4 figure

    A solution to the mu problem in the presence of a heavy gluino LSP

    Get PDF
    In this paper we present a solution to the μ\mu problem in an SO(10) supersymmetric grand unified model with gauge mediated and D-term supersymmetry breaking. A Peccei-Quinn symmetry is broken at the messenger scale M1012M\sim 10^{12} GeV and enables the generation of the μ\mu term. The boundary conditions defined at MM lead to a phenomenologically acceptable version of the minimal supersymmetric standard model with novel particle phenomenology. Either the gluino or the gravitino is the lightest supersymmetric particle (LSP). If the gravitino is the LSP, then the gluino is the next-to-LSP (NLSP) with a lifetime on the order of one month or longer. In either case this heavy gluino, with mass in the range 25 - 35 GeV, can be treated as a stable particle with respect to experiments at high energy accelerators. Given the extensive phenomenological constraints we show that the model can only survive in a narrow region of parameter space resulting in a light neutral Higgs with mass 8691\sim 86 - 91 GeV and tanβ914\tan\beta \sim 9 - 14. In addition the lightest stop and neutralino have mass 100122\sim 100 - 122 GeV and 5072\sim 50 - 72 GeV, respectively. Thus the model will soon be tested. Finally, the invisible axion resulting from PQ symmetry breaking is a cold dark matter candidate.Comment: 30 pages, 9 figure

    Ultra High Energy Cosmic Rays from Sequestered X Bursts

    Get PDF
    Assuming that there is no GZK (Greisen-Zatsepin-Kuzmin) cut-off and that super-GZK cosmic rays correlate with AGN (Active Galactic Nuclei) at cosmological distances, it is speculated that a relic superheavy particle (X) has its lifetime enhanced by sequestration in an extra dimension. This sequestration is assumed to be partially liberated by proximity of merging supermassive black holes in an AGN, temporarily but drastically reducing the lifetime, thus stimulating an X burst. Based on sequestration of the decay products of X, a speculative explanation of the observed γ/N\gamma/N ratio is proposed.Comment: 12 pages LaTe

    Where the Sidewalk Ends: Jets and Missing Energy Search Strategies for the 7 TeV LHC

    Get PDF
    This work explores the potential reach of the 7 TeV LHC to new colored states in the context of simplified models and addresses the issue of which search regions are necessary to cover an extensive set of event topologies and kinematic regimes. This article demonstrates that if searches are designed to focus on specific regions of phase space, then new physics may be missed if it lies in unexpected corners. Simple multiregion search strategies can be designed to cover all of kinematic possibilities. A set of benchmark models are created that cover the qualitatively different signatures and a benchmark multiregion search strategy is presented that covers these models.Comment: 30 pages, 8 Figures, 3 Tables. Version accepted at JHEP. Minor changes. Added figur

    Single gluino production in the R-parity lepton number violating MSSM at the LHC

    Get PDF
    We examine the RpR_{p}-violating signal of single gluino production associated with a charged lepton or neutrino at the large hadron collider (LHC), in the model of R-parity relaxed supersymmetric model. If the parameters in the /Rp{\rlap/R}_p supersymmetric interactions are not too small, and the mass of gluino is considered in the range from several GeV (as the Lightest Supersymmetric Particle) to 800 GeV, the cross section of the single gluino production via Drell-Yan processes can be in the order of 10210310^2 \sim 10^3 femto barn, and that via gluon fusion in the order of 10110310^{-1} \sim 10^3 femto barn. If the gluino decay can be well detected in the CERN LHC, this process provides a prospective way to probe supersymmetry and RpR_p violation.Comment: LaTex, 22 pages, 5 EPS file

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    Rehabilitation following proximal humeral fracture in the UK National Health Service: a survey of publicly facing information

    Get PDF
    © 2020 John Wiley & Sons Ltd. Introduction: Proximal humeral fractures (PHF) are a common injury in the older population but there is limited research evaluating rehabilitation following PHF. The aim of this study was to understand current National Health Service (NHS) practice for rehabilitation following PHF as a platform for conducting future research. Methods: Two reviewers independently undertook electronic searches for publicly available information sheets (PIS) from websites of NHS Trusts that included detail about rehabilitation following PHF, for example, duration of immobilisation. One reviewer extracted data and a second reviewer verified this. Results: Seventeen PIS from 17 different NHS trusts were identified. All provided some information on the method of immobilisation but only six provided guidance on duration of immobilisation with the median time being 2 weeks (range 0–6). The median time to commencement of passive exercise was 2 weeks (range 0–4) and 9 weeks (range 6–12) for active exercise. Only one PIS reported on the time for commencement of resisted exercises and this was reported as 6 weeks. The median time recommended return to work was 7.5 weeks (range 6–12). Conclusion: This study found limited publicly available information for rehabilitation following PHF in the NHS but offers some insight into current approaches. Our results will facilitate development of relevant information for patients and evaluation of rehabilitation strategies in future research

    An Updated Description of Heavy-Hadron Interactions in Geant-4

    Get PDF
    Exotic stable massive particles (SMP) are proposed in a number of scenarios of physics beyond the Standard Model. It is important that LHC experiments are able both to detect and extract the quantum numbers of any SMP with masses around the TeV scale. To do this, an understanding of the interactions of SMPs in matter is required. In this paper a Regge-based model of R-hadron scattering is extended and implemented in Geant-4. In addition, the implications of RR-hadron scattering for collider searches are discussed
    corecore