45 research outputs found
DNA-PKCS binding to p53 on the p21WAF1/CIP1 promoter blocks transcription resulting in cell death
A key determinant of p53-mediated cell fate following various DNA damage modalities is p21WAF1/CIP1 expression, with elevated p21 expression triggering cell cycle arrest and repressed p21 expression promoting apoptosis. We show that under pro-death DNA damage conditions, the DNA-dependent protein kinase (DNA-PKCS) is recruited to the p21 promoter where it forms a protein complex with p53. The DNA-PKCS-associated p53 displays post-translational modifications that are distinct from those under pro-arrest conditions, ablating p21 transcription and inducing cell death. Inhibition of DNA-PK activity prevents DNA-PKCS binding to p53 on the p21 promoter, restores p21 transcription and significantly reduces cell death. These data demonstrate that DNA-PKCS negatively regulates p21 expression by directly interacting with the p21 transcription machinery via p53, driving the cell towards apoptosis
The biochemistry and regulation of S100A10: a multifunctional plasminogen receptor involved in oncogenesis
The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-alpha, interferon-gamma, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RAR alpha and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.Canadian Cancer Society Research Institute; Canadian Institutes of Health Research; Foundation for Science and Technology of Portuga
Modulating autophagy as a therapeutic strategy for the treatment of paediatric high‐grade glioma
Paediatric high grade glioma (pHGG) represent a therapeutically challenging group of tumours. Despite decades of research there has been a minimal improvement in treatment and the clinical prognosis remains poor. Autophagy, a highly conserved process for recycling metabolic substrates is upregulated in pHGG, promoting tumour progression and evading cell death. There is significant cross talk between autophagy and a plethora of critical cellular pathways, many of which Accepted Article This article is protected by copyright. All rights reserved. are dysregulated in pHGG. The following article will discuss our current understanding of autophagy signalling in pHGG and the potential modulation of this network as a therapeutic target
Retraction notice to " IP1867B suppresses the Insulin-like Growth Factor 1 Receptor (IGF1R) ablating epidermal growth factor receptor inhibitor resistance in adult high grade gliomas” [Canc. Lett., 458 (2019) pages 29–38]
This article has been retracted at the request of the Editor-in-Chief due to concerns regarding the legitimacy of images and data presented in the paper. Though a corrigendum (Can. Lett. Vol. 469, 2020, pages 524–535) was previously published to address some of these concerns, this corrigendum has also been found to contain errors and therefore cannot stand. Specific concerns are listed below.info:eu-repo/semantics/publishedVersio
IP1867B suppresses the insulin-like growth factor 1 receptor (IGF1R) ablating epidermal growth factor receptor inhibitor resistance in adult high grade gliomas
High grade gliomas (HGGs) are aggressive primary brain tumours with local invasive growth and poor clinical prognosis. Clinical outcome is compounded by resistance to standard and novel therapeutics. We have evaluated reformulated aspirin (IP1867B) alone and in combination with conventional and novel anti-aHGG agents. We show that recent biopsy-derived aHGG models were highly resistant to conventional therapeutics although show sensitivity to IP1867B, a reformulated "liquid" aspirin. IP186713 treatment mediated a potent suppression of the IL6/STAT3 and NF-kappa B pathways and observed a significant reduction in EGFR transcription and protein expression. We observed the loss of the insulin-like growth factor 1 and insulin-like growth factor 1 receptor expression at both the transcript and protein level post IP1867B treatment. This increased sensitivity to EGFR inhibitors. In vivo, IP1867B was very well tolerated, had little-to-no gastric lesions versus aspirin and, directed a significant reduction of tumour burden with suppression of EGFR, IGF1 and IGFR1. With EGFR inhibitors, we noted a potent synergistic response in aHGG cells. These data provide a rationale for further investigation of IP1867B with a number of anti-EGFR agents currently being evaluated in the clinic.Brain Tumour ResearchHeadcase Cancer TrustOllie Young FoundationFCT Investigator contract from the Foundation for Science and Technology (FCT), Portugal [IF/00614/2014]FCTPortuguese Foundation for Science and Technology [IF/00614/2014/CP12340006, UID/BIM/04773/2013CBMR1334]Innovate Pharmaceutical
Corrigendum to IP1867B suppresses the insulin-like growth factor 1 receptor (IGF1R) ablating epidermal growth factor receptor inhibitor resistance in adult high grade gliomas (vol 458C, pg 29, 2019)
info:eu-repo/semantics/publishedVersio
Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage
Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2'-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.Natural Sciences and Engineering Research Council of Canada (NSERC); European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Beatrice Hunter Cancer Research Institute; Terry Fox Foundationinfo:eu-repo/semantics/publishedVersio
Future Ocean Observations to Connect Climate, Fisheries and Marine Ecosystems
Advances in ocean observing technologies and modeling provide the capacity to revolutionize the management of living marine resources. While traditional fisheries management approaches like single-species stock assessments are still common, a global effort is underway to adopt ecosystem-based fisheries management (EBFM) approaches. These approaches consider changes in the physical environment and interactions between ecosystem elements, including human uses, holistically. For example, integrated ecosystem assessments aim to synthesize a suite of observations (physical, biological, socioeconomic) and modeling platforms [ocean circulation models, ecological models, short-term forecasts, management strategy evaluations (MSEs)] to assess the current status and recent and future trends of ecosystem components. This information provides guidance for better management strategies. A common thread in EBFM approaches is the need for high-quality observations of ocean conditions, at scales that resolve critical physical-biological processes and are timely for management needs. Here we explore options for a future observing system that meets the needs of EBFM by (i) identifying observing needs for different user groups, (ii) reviewing relevant datasets and existing technologies, (iii) showcasing regional case studies, and (iv) recommending observational approaches required to implement EBFM. We recommend linking ocean observing within the context of Global Ocean Observing System (GOOS) and other regional ocean observing efforts with fisheries observations, new forecasting methods, and capacity development, in a comprehensive ocean observing framework
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
The Biochemistry and Regulation of S100A10: A Multifunctional Plasminogen Receptor Involved in Oncogenesis
The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-α, interferon-γ, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RARα and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site