280 research outputs found

    Isolation and characterization of the full-length cDNA encoding a member of a novel cytochrome p450 family (CYP320A1) from the tropical freshwater snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni

    Get PDF
    Cytochrome p450s (cyp450s) are a family of structurally related proteins, with diverse functions, including steroid synthesis and breakdown of toxins. This paper reports the full-length sequence of a novel cyp450 gene, the first to be isolated from the tropical freshwater snail Biomphalaria glabrata, an important intermediate host of Schistosoma mansoni. The nucleotide sequence is 2291 bp with a predicted amino acid sequence of 584aa. The sequence demonstrates conserved cyp450 structural motifs, but is sufficiently different from previously reported cyp450 sequences to be given a new classification, CYP320A1. Initially identified as down-regulated in partially resistant snails in response to S. mansoni infection, amplification of this gene using RT-PCR in both totally resistant or susceptible snail lines when exposed to infection, and all tissues examined, suggests ubiquitous expression. Characterization of the first cyp450 from B. glabrata is significant in understanding the evolution of these metabolically important proteins

    The PPARÎł Agonist Pioglitazone Fails to Alter the Abuse Potential of Heroin, But Does Reduce Heroin Craving and Anxiety

    Get PDF
    Possibly through its effects on glia, the peroxisome proliferator-activated gamma receptor (PPARÎł) agonist pioglitazone (PIO) has been shown to alter the effects of heroin in preclinical models. Until now, these results have not been assessed in humans. Heroin-dependent participants were randomized to either active (45 mg, n = 14) or placebo (0 mg, n = 16) PIO maintenance for the duration of the three-week study. After stabilization on buprenorphine (8 mg), participants began a two-week testing period. On the first to fourth test days, participants could self-administer drug or money by making verbal choices for either option. On the fifth day, active heroin and money were administered and participants could work to receive heroin or money using a progressive ratio choice procedure. Test days 6–10 were identical to test days 1–5 with the exception that, during one of the test weeks, placebo was available on the first four days, and during the other week heroin was available. PIO failed to alter the reinforcing or positive subjective effects of heroin, but it did reduce heroin craving and overall anxiety. Although we were unable to replicate the robust effects found in preclinical models, these data provide an indication of drug effects that deserves further exploration

    A Telehealth-Delivered Pulmonary Rehabilitation Intervention in Underserved Hispanic and African American Patients With Chronic Obstructive Pulmonary Disease: A Community-Based Participatory Research Approach.

    Get PDF
    BACKGROUND:Although home telemonitoring (TM) is a promising approach for patients managing their chronic disease, rehabilitation using home TM has not been tested for use with individuals living with chronic obstructive pulmonary disease (COPD) residing in underserved communities. OBJECTIVE:This study aimed to analyze qualitative data from focus groups with key stakeholders to ensure the acceptability and usability of the TM COPD intervention. METHODS:We utilized a community-based participatory research (CBPR) approach to adapt a home TM COPD intervention to facilitate acceptability and feasibility in low-income African American and Hispanic patients. The study engaged community stakeholders in the process of modifying the intervention in the context of 2 community advisory board meetings. Discussions were audio recorded and professionally transcribed and lasted approximately 2 hours each. Structural coding was used to mark responses to topical questions in interview guides. RESULTS:We describe herein the formative process of a CBPR study aimed at optimizing telehealth utilization among African American and Latino patients with COPD from underserved communities. A total of 5 major themes emerged from qualitative analyses of community discussions: equipment changes, recruitment process, study logistics, self-efficacy, and access. The identification of themes was instrumental in understanding the concerns of patients and other stakeholders in adapting the pulmonary rehabilitation (PR) home intervention for acceptability for patients with COPD from underserved communities. CONCLUSIONS:These findings identify important adaptation recommendations from the stakeholder perspective that should be considered when implementing in-home PR via TM for underserved COPD patients. TRIAL REGISTRATION:ClinicalTrials.gov NCT03007485; https://clinicaltrials.gov/ct2/show/NCT03007485

    BioïŹlter aquaponic system for nutrients removal from fresh market wastewater

    Get PDF
    Aquaponics is a signiïŹcant wastewater treatment system which refers to the combination of conventional aquaculture (raising aquatic organism) with hydroponics (cultivating plants in water) in a symbiotic environment. This system has a high ability in removing nutrients compared to conventional methods because it is a natural and environmentally friendly system (aquaponics). The current chapter aimed to review the possible application of aquaponics system to treat fresh market wastewater with the intention to highlight the mechanism of phytoremediation occurs in aquaponic system. The literature revealed that aquaponic system was able to remove nutrients in terms of nitrogen and phosphorus

    Capture-recapture analysis of all-cause mortality data in Bohol, Philippines

    Get PDF
    Background: Despite the importance of mortality data for effective planning and monitoring of health services, official reporting systems rarely capture every death. The completeness of death reporting and the subsequent effect on mortality estimates were examined in six municipalities of Bohol province in the Philippines using a system review and capture-recapture analysis.Methods: Reports of deaths were collected from records at local civil registration offices, health centers and hospitals, and parish churches. Records were reconciled using a specific set of matching criteria, and both a two-source and a three-source capture-recapture analysis was conducted. For the two-source analysis, civil registry and health data were combined due to dependence between these sources and analyzed against the church data.Results: Significant dependence between civil registration and health reporting systems was identified. There were 8,075 unique deaths recorded in the study area between 2002 and 2007. We found 5% to 10% of all deaths were not reported to any source, while government records captured only 77% of all deaths. Life expectancy at birth (averaged for 2002-2007) was estimated at 65.7 years and 73.0 years for males and females, respectively. This was one to two years lower than life expectancy estimated from reconciled reported deaths from all sources, and four to five years lower than life expectancy estimated from civil registration data alone. Reporting patterns varied by age and municipality, with childhood deaths more underreported than adult deaths. Infant mortality was underreported in civil registration data by 62%.Conclusions: Deaths are underreported in Bohol, with inconsistent reporting procedures contributing to this situation. Uncorrected mortality measures would subsequently be misleading if used for health planning and evaluation purposes. These findings highlight the importance of ensuring that official mortality estimates from the Philippines are derived from data that have been assessed for underreporting and corrected as necessary

    Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana

    Get PDF
    Amidase 1 (AMI1) from Arabidopsis thaliana converts indole-3-acetamide (IAM), into indole-3-acetic acid (IAA). AMI1 is part of a small isogene family comprising seven members in A. thaliana encoding proteins which share a conserved glycine- and serine-rich amidase-signature. One member of this family has been characterized as an N-acylethanolamine-cleaving fatty acid amidohydrolase (FAAH) and two other members are part of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) or mitochondria (Tom complex) and presumably lack enzymatic activity. Among the hitherto characterized proteins of this family, AMI1 is the only member with indole-3-acetamide hydrolase activity, and IAM is the preferred substrate while N-acylethanolamines and oleamide are not hydrolyzed significantly, thus suggesting a role of AMI1 in auxin biosynthesis. Whereas the enzymatic function of AMI1 has been determined in vitro, the subcellular localization of the enzyme remained unclear. By using different GFP-fusion constructs and an A. thaliana transient expression system, we show a cytoplasmic localization of AMI1. In addition, RT-PCR and anti-amidase antisera were used to examine tissue specific expression of AMI1 at the transcriptional and translational level, respectively. AMI1-expression is strongest in places of highest IAA content in the plant. Thus, it is concluded that AMI1 may be involved in de novo IAA synthesis in A. thaliana

    Applicant perspectives during selection

    Get PDF
    We provide a comprehensive but critical review of research on applicant reactions to selection procedures published since 2000 (n = 145), when the last major review article on applicant reactions appeared in the Journal of Management. We start by addressing the main criticisms levied against the field to determine whether applicant reactions matter to individuals and employers (“So what?”). This is followed by a consideration of “What’s new?” by conducting a comprehensive and detailed review of applicant reaction research centered upon four areas of growth: expansion of the theoretical lens, incorporation of new technology in the selection arena, internationalization of applicant reactions research, and emerging boundary conditions. Our final section focuses on “Where to next?” and offers an updated and integrated conceptual model of applicant reactions, four key challenges, and eight specific future research questions. Our conclusion is that the field demonstrates stronger research designs, with studies incorporating greater control, broader constructs, and multiple time points. There is also solid evidence that applicant reactions have significant and meaningful effects on attitudes, intentions, and behaviors. At the same time, we identify some remaining gaps in the literature and a number of critical questions that remain to be explored, particularly in light of technological and societal changes

    Loss of Genetic Redundancy in Reductive Genome Evolution

    Get PDF
    Biological systems evolved to be functionally robust in uncertain environments, but also highly adaptable. Such robustness is partly achieved by genetic redundancy, where the failure of a specific component through mutation or environmental challenge can be compensated by duplicate components capable of performing, to a limited extent, the same function. Highly variable environments require very robust systems. Conversely, predictable environments should not place a high selective value on robustness. Here we test this hypothesis by investigating the evolutionary dynamics of genetic redundancy in extremely reduced genomes, found mostly in intracellular parasites and endosymbionts. By combining data analysis with simulations of genome evolution we show that in the extensive gene loss suffered by reduced genomes there is a selective drive to keep the diversity of protein families while sacrificing paralogy. We show that this is not a by-product of the known drivers of genome reduction and that there is very limited convergence to a common core of families, indicating that the repertoire of protein families in reduced genomes is the result of historical contingency and niche-specific adaptations. We propose that our observations reflect a loss of genetic redundancy due to a decreased selection for robustness in a predictable environment

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure
    • 

    corecore