27 research outputs found

    The use of a shear thinning polymer as a bubbly magma analogue for scaled laboratory experiments

    Get PDF
    Analogue materials are commonly used in volcanology to perform scaled laboratory experiments. Analogue experiments inform on fundamental fluid dynamic, structural and mechanical processes that are typically very difficult to observe and quantify directly in the natural volcanic system. Here we investigate the suitability of an aqueous solution of hydroxyethyl cellulose polymer (HEC) for use as a lava/magma analogue, with a particular focus on its rheological behaviour. We characterize a range of physical properties as functions of the concentration and temperature of the solution: density; specific heat capacity; thermal diffusivity; thermal conductivity; surface tension; as well as rheology. HEC has a non-Newtonian, shear-thinning rheology that depends on the concentration and temperature of the solution. We show that the rheology is well described by the Cross model, which was originally developed for polymer solutions, but has also been applied to bubbly magmas. Using this similarity, an approach for scaling analogue experiments that use shear-thinning polymers, like HEC, to bubbly magma is presented. A detailed workflow and a spreadsheet are provided to allow experimentalists to investigate the effects of non-Newtonian behaviour in their existing laboratory set-ups. This contribution will allow for the more complex, but often more realistic case of bubble-bearing magmas to be rigorously studied in experimental volcanology

    Rheological controls on the eruption potential and style of an andesite volcano:A case study from Mt. Ruapehu, New Zealand

    Get PDF
    The evolving magma rheology of three recent Ruapehu eruptions (1969, 1977, and 1995) is estimated using a combination of thermodynamic models and rheological calculations, supported by textural observations of the erupted scoria. We use a well-established thermodynamic model to determine the composition of these representative Ruapehu magmas from 300MPa to ∼30MPa. The outputs of the model provide the changing crystal and bubble content in a closed system (assuming no gas loss), as well as the fractionating melt compositions. We calculate the melt viscosity, and the effect of bubbles and crystals, to quantify the rheology of the magma during ascent (under assumed equilibrium conditions). The moderately high phenocryst content of Ruapehu scoria (∼30%) means that only a small amount of additional microlite crystallisation (∼5%) would result in a yield strength, which may lead the magma to stall. However, if the strain rates are high enough, more crystallisation would be possible without developing a yield stress. This suggests that microlite-rich magmas are almost certain to stall unless they encounter significant fluid addition from a source such as a hydrothermal system, groundwater, or surface water (i.e., Ruapehu's Crater Lake). Ruapehu magmas are initially H2O-undersaturated and as a consequence, crystallisation and bubble growth were suppressed until the magma achieved saturation, at ∼100 to 50 MPa. From this analysis, we suggest that Ruapehu magmas are more likely to erupt compared to magmas of a similar composition that are H2O-saturated. This partly explains the regular, albeit small-volume eruptions at Ruapehu and the propensity for phreatomagmatic eruptions when the magma:water ratio is low

    The microanalysis of iron and sulphur oxidation states in silicate glass - Understanding the effects of beam damage

    Get PDF
    Quantifying the oxidation state of multivalent elements in silicate melts (e.g., Fe²⁺ versus Fe³⁺ or S²⁻ versus S⁶⁺) is fundamental for constraining oxygen fugacity. Oxygen fugacity is a key thermodynamic parameter in understanding melt chemical history from the Earth's mantle through the crust to the surface. To make these measurements, analyses are typically performed on small (<100 µm diameter) regions of quenched volcanic melt (now silicate glass) forming the matrix between crystals or as trapped inclusions. Such small volumes require microanalysis, with multiple techniques often applied to the same area of glass to extract the full range of information that will shed light on volcanic and magmatic processes. This can be problematic as silicate glasses are often unstable under the electron and photon beams used for this range of analyses. It is therefore important to understand any compositional and structural changes induced within the silicate glass during analysis, not only to ensure accurate measurements (and interpretations), but also that subsequent analyses are not compromised. Here, we review techniques commonly used for measuring the Fe and S oxidation state in silicate glass and explain how silicate glass of different compositions responds to electron and photon beam irradiation

    Experiments on the low-Reynolds-number settling of a sphere through a fluid interface

    Get PDF
    The low-Reynolds-number gravitational settling of a sphere through a fluid interface is investigated experimentally. By varying the viscosity ratio between the two fluids and the Bond number, two different modes of interfacial deformation are observed: a tailing mode and a film drainage mode. In the tailing mode, the interface deforms significantly as the sphere approaches, and the sphere becomes enveloped by a layer of the upper fluid. A tail forms, connecting the sphere to the bulk of the upper phase. In the film drainage mode, the interface deforms much less and the sphere impacts onto the interface, which either ruptures to form a contact line on the sphere or leaves a very thin wetting film. Additionally, two types of sinking profiles are observed: steady sinking, where the sphere velocity changes monotonically as it sinks, and stalled sinking, where the sphere’s progress is inhibited by the interface, before it accelerates into the lower fluid. We present a regime diagram showing the different behaviors. Finally, the dependence of the sinking time on the Bond number and viscosity ratio is investigated. For the film drainage regime a simple scaling law is deduced; the tailing regime exhibits more complicated dynamics, possibly explained by a multistage sinking process

    High spatial resolution analysis of the iron oxidation state in silicate glasses using the electron probe

    Get PDF
    The iron oxidation state in silicate melts is important for understanding their physical properties, although it is most often used to estimate the oxygen fugacity of magmatic systems. Often high spatial resolution analyses are required, yet the available techniques, such as μXANES and μMössbauer, require synchrotron access. The flank method is an electron probe technique with the potential to measure Fe oxidation state at high spatial resolution but requires careful method development to reduce errors related to sample damage, especially for hydrous glasses. The intensity ratios derived from measurements on the flanks of FeLα and FeLβ X-rays (FeLβf/FeLαf) over a time interval (time-dependent ratio flank method) can be extrapolated to their initial values at the onset of analysis. We have developed and calibrated this new method using silicate glasses with a wide range of compositions (43–78 wt% SiO2, 0–10 wt% H2O, and 2–18 wt% FeOT, which is all Fe reported as FeO), including 68 glasses with known Fe oxidation state. The Fe oxidation state (Fe2+/FeT) of hydrous (0–4 wt% H2O) basaltic (43–56 wt% SiO2) and peralkaline (70–76 wt% SiO2) glasses with FeOT > 5 wt% can be quantified with a precision of ±0.03 (10 wt% FeOT and 0.5 Fe2+/FeT) and accuracy of ±0.1. We find basaltic and peralkaline glasses each require a different calibration curve and analysis at different spatial resolutions (∼20 and ∼60 μm diameter regions, respectively). A further 49 synthetic glasses were used to investigate the compositional controls on redox changes during electron beam irradiation, where we found that the direction of redox change is sensitive to glass composition. Anhydrous alkali-poor glasses become reduced during analysis, while hydrous and/or alkali-rich glasses become oxidized by the formation of magnetite nanolites identified using Raman spectroscopy. The rate of reduction is controlled by the initial oxidation state, whereas the rate of oxidation is controlled by SiO2, Fe, and H2O content

    Water veins in polycrystalline ice

    No full text
    corecore