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The low-Reynolds-number gravitational settling of a sphere through a fluid interface
is investigated experimentally. By varying the viscosity ratio between the two fluids and
the Bond number, two different modes of interfacial deformation are observed: a tailing
mode and a film drainage mode. In the tailing mode, the interface deforms significantly
as the sphere approaches, and the sphere becomes enveloped by a layer of the upper fluid.
A tail forms, connecting the sphere to the bulk of the upper phase. In the film drainage
mode, the interface deforms much less and the sphere impacts onto the interface, which
either ruptures to form a contact line on the sphere or leaves a very thin wetting film.
Additionally, two types of sinking profiles are observed: steady sinking, where the sphere
velocity changes monotonically as it sinks, and stalled sinking, where the sphere’s progress
is inhibited by the interface, before it accelerates into the lower fluid. We present a regime
diagram showing the different behaviors. Finally, the dependence of the sinking time on
the Bond number and viscosity ratio is investigated. For the film drainage regime a simple
scaling law is deduced; the tailing regime exhibits more complicated dynamics, possibly
explained by a multistage sinking process.
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I. INTRODUCTION

Interactions between particles and fluid interfaces have significant applications in industry and
nature. Industrial applications include particle coating [1,2] and separation [3] and the measurement
of ultra-low interfacial tensions (IFTs) [4]. Water-walking arthropods supported on a lake surface
by surface tension are a common natural example [5,6], while various particle-interface interactions
also occur in magmas, which are a mixture of molten liquid (melt), bubbles, and solid crystals.
For example, wetting of crystals by bubbles can drive mineral flotation, modifying the spatial
distribution of chemical components throughout the magmatic system [7]. Another process is the
mixing of magmas of different compositions, commonly invoked as a trigger in volcanic eruption
models [8], and the contribution of crystals to the mixing process [9]. A final magmatic example
is provided by cored volcanic bombs, fragments of country rock entrained into a magma and then
ejected surrounded by a layer of melt [10].
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FIG. 1. Sketch of the physical parameters in the system. The sphere is denser than both fluids, i.e., ρs >

ρ2 > ρ1. If a three phase contact line exists on the surface of the sphere, the contact angle is defined as χ .

Many of these examples involve small particles and viscous fluids. However, while much
research has gone into studying both the conditions at which an interface can support a particle
[11–20] and the dynamics of inertial impacts [21–27], there has been relatively little study of the
low-Reynolds-number impact of particles onto fluid interfaces [12,28–31]. In particular, questions
remain regarding the relative effects of viscous, buoyancy (gravity), and IFT forces on the sinking
dynamics. Here we present experimental observations of low-Reynolds-number settling through an
interface, along with measurements of the timescale of sinking.

The rest of this introduction defines the problem (Sec. I A), describes prior research (Sec. I B)
and presents the questions of the study (Sec. I C). We then describe the experiments (Sec. II) and
present and discuss the results (Sec. III) before ending with our conclusions (Sec. IV).

A. Problem description

We are interested in the low-Reynolds-number (Re = ρLU/η � 1, where ρ, L, U , and η are
characteristic values of the density, length scale, velocity, and dynamic viscosity, respectively)
gravitational settling of a sphere through the interface between two density-stratified, immiscible
fluids. The parameters of the system are defined in Fig. 1. Dimensional analysis shows that three
dimensionless numbers characterize the system: the Bond number Bo , a modified density ratio
(MDR) D, and the viscosity ratio λ defined by

Bo = (ρ2 − ρ1)ga2

σ
, D = ρs − ρ1

ρ2 − ρ1
, λ = η2

η1
. (1)

Another parameter commonly used in descriptions of interfacial phenomena is the capillary
number Ca = ηU/σ . If one defines U to be the terminal velocity in the upper fluid, and η = η1,
then Ca = DBo . Hence, the capillary number is not required to form a complete description of the
system.

The interface has an intrinsic length scale called the capillary length

lc =
√

σ

(ρ2 − ρ1)g
. (2)

On length scales smaller than lc, IFT controls the response of the interface to a disturbance,
whereas on length scales larger than lc, the response is controlled by the density contrast between
the fluids. Comparing Eqs. (1) and (2), we find that Bo = 1 when a = lc, suggesting a transition in
behavior may be seen near Bo = 1.

If the sphere surface and fluid interface meet at a three-phase contact line, one also needs to
define the contact angle χ (angle between the tangents to the sphere and fluid surface at the contact)
[32]. During the sinking process, the contact line will move and the contact angle will change [33].
In this study, we neglect the dynamics of the moving contact line although they would need to be
considered by a more accurate theoretical or numerical study.

To determine the relationships between timescales in the problem and the dimensionless
parameters, we nondimensionalize time with respect to a chosen timescale. The large number of
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FIG. 2. Sketch showing modes of interfacial deformation. The upper is a tailing mode, the lower, film
drainage. The tailing mode leads to significant entrainment of the upper phase into the lower layer.

parameters in the system means there are different choices. One possibility is the Stokes timescale
of the upper fluid, tu [34], defined as the time taken for the sphere to settle a distance of one radius
in an infinite volume of the upper fluid. Alternatively, one could also choose the Stokes timescale of
the lower fluid tl. There also exist timescales associated with the IFT, termed capillary timescales of
the upper and lower fluid

tcu = η1a

σ
, (3)

and

tcl = η2a

σ
. (4)

In this study, we use the capillary timescale of the upper fluid tcu, although previous studies have
employed both tu [34] and tcl [35]. The different timescales are related to each other through the
dimensionless parameters

tcu = 2DBo tu
9

= tcl

λ
= 2(D − 1)Bo tl

9λ
. (5)

B. Previous studies

A particle at an interface between two fluids is acted on by gravity, buoyancy, viscous drag, and
IFT forces. Much of the prior theoretical work on the interaction between particles and horizontal
interfaces has addressed the conditions for which a particle placed instantaneously at the interface
can be supported [11–20,36]. Vella [37] provides a review of the conditions required for floating or
sinking of particles at an interface, including the effects of geometry, wettability, particle flexibility,
and the presence of multiple particles.

These theoretical studies all assume the initial existence of a three-phase contact line on the
surface of the particle. The initial condition in our investigation, however, is a sphere moving
under gravity towards a fluid interface. It has been shown analytically that the sphere slows down
on approach to the interface, according to a factor depending on the sphere-interface separation
[38] and the viscosity ratio between the two fluids [28]. However, these models neglect interfacial
deformation, and experiments performed to test the models show that spheres settle towards an
interface slightly faster than predicted [28].

For a sphere settling onto an interface, two different modes of interfacial deformation have been
observed in experiments [39] and numerical models [30]: a film drainage and a tailing mode (Fig. 2).
The film drainage mode is characterized by only a small amount of interfacial deformation, and a
thin film is created between the sphere and the interface [40]. Theoretical [41,42] and numerical

024003-3



JARVIS, MADER, HUPPERT, CASHMAN, AND BLUNDY

[43,44] models of film drainage make predictions of the film thickness and drainage rate which
agree with experimental observations, although it is difficult to numerically resolve film dynamics
for very thin films [44]. While these models do not include film rupture, it has been shown that the
film is thinnest at a point off-axis, suggesting the most likely location for rupture [45]. Film rupture,
however, requires the formation of a three phase contact line [46] which remains poorly understood.
Such contact lines are associated with a line tension [47], but estimates of its size vary over many
orders of magnitude [48]. Therefore, we do not discuss this further. Where a three-phase contact line
initially exists, Lee and Kim [35] proposed a model describing the low-Reynolds-number sinking
of a sphere through an air-liquid interface and derived a scaling relationship for the sinking time
depending on the MDR, Bond number, and contact angle (assumed static).

In the tailing mode, the interfacial deformation is significant. Here the interface deforms as the
sphere approaches and the sphere is enveloped by the interface. This envelope forms a tail behind
the sphere, connecting it to the upper body of fluid. The tail thins as the buoyant fluid drains upward
and eventually breaks. Tails have been observed experimentally for a sphere settling into a lower
viscosity medium [9,12,34] although the effect of λ on the sinking process to our knowledge has
not been considered. Tails have also been observed for the passage of deformable bubbles through
fluid interfaces [31,44].

The settling of spheres through interfaces has also been considered numerically using a boundary
integral method (BIM). First done for small interfacial deformations [29] and later extended [30],
the models reproduce observations of film thinning and tailing mode sinking. However, these
models terminate before interface rupture, as the BIM is unable to model topological changes to
the interface.

Very recently, Pierson and Magnaudet [26,27] have produced a comprehensive experimental and
numerical study of spheres settling through fluid interfaces. The majority of their experiments
were performed in inertia-controlled conditions, where they observed three distinct regimes in
addition to the flotation, film-drainage, and tailing already mentioned here: three-dimensional
tailing, where the axisymmetry is broken; tailing with peripheral corollas (skirt-like instabilities);
and tail fragmentation, where the corollas are significant enough to disrupt the tail. These additional
regimes occur only when inertia is important, and as such have not been observed in the present
study.

All of the above works considered isolated particles. However, some studies have also considered
the settling of multiple particles through fluid interfaces, finding that as settling particles slow down
at the interface, they can cluster [49]. For the case of particles that can be individually supported at
an interface, such clusters form rafts which sink at some critical size [50].

C. Questions

Most of the previous studies on the settling of spheres through fluid interfaces consider
intermediate- to high-Reynolds-numbers [1,12,26,34] where inertia is important, meaning there
remain a number of unresolved questions in the low-Reynolds-number regime. This investigation
seeks to provide a more complete description of such processes, with particular focus on three key
issues. First, for what parameter values is a tailing mode observed as opposed to a film drainage
configuration? Although observations have been made of both behaviors [12,34,39], quantitative
determination of the conditions that control the mode of deformation is incomplete. In particular,
the effect of viscosity ratio has been largely ignored. Second, for what conditions is the settling of the
sphere inhibited by the interface, i.e., when does the velocity of the sphere as a function of time have
a minimum as opposed to monotonically transitioning to the terminal velocity in the lower fluid? To
the authors’ knowledge, this has not previously been addressed. Finally, how does the sinking time
depend on the parameters of the system? Pitois et al. [34] found that for very small viscosity ratios
(λ � 1), spheres sinking through the tailing mode have a sinking timescale ts/tu ∼ 1/ ln(DBo ),
where ts is the time between the sphere first touching the plane of the undeformed interface and the
moment at which the tail snaps. However, this relationship is based on only five data points and
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no fitting is performed. Nor is there any theoretical basis for such a relationship, and variations in
the viscosity ratio were not considered. Lee and Kim [35] used an analytical approach to study the
sinking of a sphere that was initially stationary at an air-water interface. The mode of sinking was
similar to the film drainage mode described above. They proposed a relationship for the sinking
time including a term to account for the contact angle

ts
tcl

∼
[

2DBo

9
− 1

3
sin2

(
χ

2

)]−1

, (6)

This model assumes that the flow field in the fluid was the same as for a completely immersed
sphere. Comparison with experiments shows the model works well until the point of interface
rupture when the sphere loses contact with the bulk of the air. However, this assumption is almost
certainly not valid for the case of an interface between two viscous fluids with a viscosity contrast.
In this project, the studies of Pitois et al. [34] and Lee and Kim [35] are extended to quantify the
dependence of sinking time on the viscosity ratio as well as the Bond number, and to consider
whether the dominant control on sinking is the IFT or the viscosity contrast.

II. METHODOLOGY

A density-stratified, two-layer fluid system was created in a rectangular cuboid tank (Fig. 3).
The lower fluid was a mixture of Tate and Lyle’s golden syrup and water, and the upper fluid was
a polydimethylsiloxane (PDMS) oil. Spherical ballotini were dropped through a central funnel and
allowed to settle through the center of the tank (ensuring consistent wall effects) onto the interface.
Filming the experiments allowed the position of the spheres to be tracked and the sinking time and
mode of deformation to be determined. The sinking time is defined as the time between the sphere
first touching the plane of the undeformed interface and the moment at which it lost contact with
the bulk of the upper phase. Details of the measurements of sphere radius and density, and fluid
viscosity, density,and IFT are given in the Supplemental Material [51] along with values of the
dimensional (Table 1) and dimensionless (Table 2) variables in each experiment.

III. RESULTS AND DISCUSSION

A. Floating or sinking

Figure 4 shows that in the parameter space defined by D and Bo , the experiments separate into
a floating and a sinking regime independent of viscosity ratio. These are compared to theoretical
regime boundaries calculated from the model of Vella et al. [16] for different contact angles. Their
model is derived for the case of a sphere placed instantaneously at rest at the interface. However, the
results compare favorably if χ � 3π/5 ≈ 1.88 rad (the sphere is preferentially wetted by the upper
fluid).

In our study, accurate determination of the contact angle [54] was difficult due to the high fluid
viscosities and small sphere radius, although estimates of the contact angle could be made from
images of spheres sinking in the film drainage regime. Using two or three frames each from 36
experiments, a mean value of (2.8 ± 0.2) radians was obtained. The spread in the data is due
to measurement uncertainty from image resolution and optical distortion by the curved interface.
Despite this, it is obvious that the sphere is preferentially wetted by the upper PDMS oil, and the
estimated contact angle is consistent with the observed floating-sinking transition. This suggests
that the regime boundary is less sensitive to the impact velocity of the sphere and the viscosity ratio
than the contact angle, contrasting with the inertial regime where it has been shown that impact can
induce sinking [23,26,55].
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FIG. 3. (a) Aerial view of the experimental setup. The Image-J plug-in MtrackJ [52,53] was used to track
the sphere position in the images from the Sony Handycam. Higher resolution images from the Canon DSLR
were used to determine both the mode of sinking and the sinking time. In some experiments, the sphere velocity
was small enough that the whole tank could be viewed at the slower frame rate of the DSLR, allowing all
measurements to be determined from a single set of images. (b) Sketch of the tank used in the experiments.
By varying the water content of the syrup solution (0%–5%), the grade of PDMS and the temperature (0–32◦),
the viscosity ratio was varied between 10−2 and 103. By using spheres from 2 to 10 mm in diameter the Bond
number varied from 0.1 to 5.

B. Mode of deformation: Film drainage or tailing

Two modes of deformation are observed: film drainage and tailing [30] (Fig. 5). In both cases,
as the sphere approaches the interface, a film of upper-phase fluid fills the gap between sphere and
interface. In the film drainage regime [Fig. 5(a)], this film drains just as quickly as the sphere settles,
so the interface remains relatively flat as the sphere approaches. The film gradually thins until it
either ruptures on the sphere surface or forms a wetting film, too small to be observed. The sphere
then slowly sinks through the interface, remaining connected to the interface through a structure
similar to a liquid bridge [56], which thins and eventually snaps.

Conversely, in the tailing regime [Fig. 5(b)], the sphere settles towards the interface faster than
the film drains upwards, meaning that the interface is substantially depressed by the approach of the
sphere. As the sphere passes the original plane of the interface, it becomes enveloped by the film
which forms a trailing tail behind the sphere, connecting it to the upper body of fluid. The tail can
grow to many sphere radii in length [Fig. 5(c)]. As it extends, it thins and snaps. For tails greater
than a few radii in length, the pinching and snapping process propagates down the column, leaving
a trail of droplets. This process continues after the sphere has impacted the base of the tank, until
only a small volume of upper phase fluid remains attached to the sphere. These tails are very similar
to those previously observed for both settling spheres [12,26,34] and rising bubbles [31].
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FIG. 4. Regime diagram for floating-sinking. Points show our experimental data. There is a clear divide
between floating and sinking, although we have not attempted to constrain the boundary. Curves are calculated
from the numerical model of Vella et al. [16], see Eqs. (7)–(9) therein, which predicts the transition for a sphere
instantaneously placed at the interface, for different values of the contact angle χ . The experiments compare
favourably with this model if χ � 3π/5.

In all but one experiment, the position of snapping is just beneath the plane of the undeformed
interface, similar to the “shallow seal” configurations observed for inertial impacts of spheres onto
air-water [24] and fluid-fluid [26] interfaces. The exception is experiment G31 (Bo = 0.81, D =
3.44, λ = 0.018) where the rupture occurs closer to the sphere. This largely agrees with the results
of Pierson and Magnaudet [26], who observed the shallow seal configuration for λ > 0.1, Bo �,
and D � 10. Pierson and Magnaudet [26] also developed a scaling argument to partially explain
the snapping position, but their arguments are valid only for Re > 1, and the presence of viscous
dissipation makes it difficult to extend their analysis to the low-Reynolds-number regime.

C. Sinking curve shape

The position curves (height of the sphere with time) define two different types of trajectories
(Fig. 6). The first records steady sinking [Fig. 6(a)], where the sphere slows as it approaches the
interface and continues to slow as it passes through. The decrease in velocity is monotonic until
a new terminal velocity is reached. The second mode describes stalled sinking [Fig. 6(b)], where
the sphere slows as it approaches the interface but then accelerates to a new terminal velocity in
the lower fluid. In no experiments was a sudden change in fall velocity observed at the moment the
interface snapped. We interpret that for steady sinking, the viscosity contrast is the dominant control
on the position curve shape, whereas the IFT is the dominant control for stalled sinking.

D. Regime diagram

Figure 7 is a regime diagram in the space defined by Bo and λ for both the mode of deformation
(film drainage or tailing) and the shape of the position curve (steady or stalled sinking). An
experiment is considered to be in the tailing regime if a continuous film of the upper fluid surrounds
the sphere once it has settled through the initial plane of the interface. Detection of the fluid film
depends on the optical resolution of the image, which is typically 22 pixels (px) mm−1. Films with a
thickness of about 5 px can be distinguished; thus in all tailing experiments reported here the sphere
is surrounded by a film at least 0.23 mm thick. For a given Bond number, the film drainage regime
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FIG. 5. Images of modes of deformation. (a) Film drainage (Bo = 4.0, D = 3.2, λ = 260; experiment F42
in the Supplemental Material [51]). (b) Tailing (Bo = 2.4, D = 3.5, λ = 4.0; experiment D24). (c) Tailing
with a long tail (Bo = 4.3, D = 3.2, λ = 1.7; experiment I14). Videos of these experiments can be found in
the Supplemental Material [51].

always occurs at higher viscosity ratios than the tailing regime. For Bo ≈ 4, the transition from
tailing to film drainage (purple curve) occurs at λ ≈ 30, and as Bo decreases, the transition moves
to smaller values of λ; for example, at Bo = 1 it occurs at λ ≈ 15. For smaller viscosity ratios,
the transition occurs at Bond numbers smaller than have been investigated. For some experiments,
the optical resolution of the images made it difficult to determine the mode of deformation; these
have been labeled as transitional. Experiments where floating was observed have been plotted,
and we observed no effect of the viscosity ratio on the floating-sinking transition. These can be
considered an extreme case of stalled sinking, where the IFT is strong enough to support the sphere
at the interface indefinitely despite the density contrast.

These observations can be understood by considering the effect of Bo and λ on the rate of
drainage of the upper phase film between the sphere and the interface relative to the settling velocity.
As λ decreases (η1 increases relative to η2), the strain rate induced in the lower fluid increases
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FIG. 6. Two different shapes of position curve seen in experiments. The dashed line shows the initial
interface position. Both cases show a transition from the terminal velocity in the upper fluid to a new
terminal velocity in the lower fluid. (a) Steady sinking (Bo = 3.6, D = 3.38, λ = 35; experiment D15 in the
Supplemental Material [51]). The sphere slows on approach to the interface and steadily decelerates to a new
slower velocity. (b) Stalled sinking (Bo = 2.5, D = 3.31, λ = 0.45; experiment G15). The sphere slows while
approaching the interface and appears to stall there before accelerating to a new terminal velocity as it moves
away. In both cases the greatest deceleration occurs just below z = 0.

relative to that in the film. The net effect is that the sphere settles faster than the film can drain
upwards, leading to interface deformation and the formation of a tail. Alternatively, increasing λ

increases the relative strain rate in the film, which drains before the sphere can settle into the lower
phase (film drainage mode). Decreasing Bo increases the stress discontinuity that can be maintained
at the interface, leading to a smaller stress transmitted to the lower phase, which in turn induces a
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FIG. 7. Regime diagram for both mode of deformation (Fig. 5) and position curve shape (Fig. 6). Distinct
regimes can be seen for film drainage (red) and tailing (blue). Points labeled transitional correspond to
experiments where the optical resolution of the image meant it was difficult to identify the mode of deformation.
The purple line is drawn to help visibly separate the regimes. The different shapes of position curve, steady
(hollow symbols) and stalled (solid symbols) sinking, also separate into distinct regimes, with the black curve
a fitted theoretical relationship for the transition [Eq. (13)].
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smaller strain rate in the lower fluid, and therefore less deformation of the interface. Theoretical
prediction of these timescales requires a sophisticated model accounting for coupling between the
motions of the sphere and the interface. The curvature of the interface and the discontinuity in fluid
properties across it makes this a nontrivial problem necessitating a numerical solution, going beyond
the scope of this work.

For a fixed Bond number an increase in the viscosity ratio causes the position curve to transition
from stalled to steady sinking (black curve). For Bo > 1 this transition occurs at 5 < λ < 10; for
smaller Bond numbers the transition moves to higher viscosity ratios and reaches λ ≈ 400 for Bo ≈
1. This behavior can be simply explained. First, consider the scenario of zero IFT (Bo → ∞). In
this case, the sinking profile must be steady if the terminal velocity in the lower layer is less than
that in the upper layer (ut,2 < ut,1). In dimensionless parameters, this is realized when

λ > 1 − 1

D
. (7)

In our experiments D ≈ 3.5, so this condition corresponds to λ > 0.7. However, as Fig. 7 shows,
the transition from stalled to steady sinking occurs for λ at least an order of magnitude greater
throughout the investigated range of Bo because of the effect of IFT. When the IFT decelerates the
sphere to a velocity less than the terminal velocity in the lower layer, stalled sinking is observed.
Conversely, when the viscosity ratio is sufficiently large that the increase in viscosity controls the
deceleration, then sinking is steady. For Bo ≈ 1, the transition between the two regimes occurs at an
order of magnitude larger than for Bo ≈ 1.5. This is because the capillary length is now comparable
to the sphere radius, meaning the IFT completely dominates the resistive force slowing the sphere.

We use these results to inform a semi-empirical model describing the stalled-steady sinking
transition. The model relies on an assumption that the sphere settles in a quasisteady fashion, such
that the forces on the sphere (weight Fw, buoyancy Fb, IFT Fσ , and viscous drag Fη) are in balance
at all times t , i.e., Fw(t ) = Fη(t ) + Fb(t ) + Fσ (t ). This is valid for Stokes flow. Then, motivated by
the expression for viscous drag on an immersed sphere in a infinite fluid, we express the viscous
drag force as Fη = f (t )V (t ), where V (t ) is the settling velocity of the sphere and the function f (t )
depends on the viscosities of the two fluids, as well as containing information on the sphere and
interface position. One can then write

V (t ) = Fw(t ) − Fb(t ) − Fσ (t )

f (t )
. (8)

Initially, V = ut,1, and once the sphere has passed the interface, V (tend) → ut,2. Stalled sinking
occurs if V (t ) has a minimum at some time t . Given the difficulties of determining the functions
Fb(t ), Fσ (t ), and f (t ), we approximate them by expressions with functional forms motivated by
physics but with adjustable fitting parameters. We assume that the buoyancy force can be expressed
as a weighted sum of its values when the sphere is fully immersed in the lower and upper fluids

Fb(t ) = 4πa3g{α(t )ρ1 + [1 − α(t )]ρ2}
3

, where 0 � α(t ) � 1. (9)

The function f (t ) is taken to be a similarly weighted sum

f (t ) = 6πa{γ (t )η1 + [1 − γ (t )]η2}, where 0 � γ (t ) � 1. (10)

We approximate the IFT force to be proportional to the maximum value an interface can exert on
a sphere at a fluid interface [16,36]

Fσ (t ) = 2β(t )πaσ, where 0 � β(t ) � 1. (11)

Finally, at all times the weight of the sphere is given by Fw = 4πa3ρs/3. Stalled sinking therefore
occurs if at some time t , V (t ) < ut,2. Following algebraic manipulation, this can be shown to be
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FIG. 8. For the film drainage experiments, the dependence of the dimensionless sinking time on (a) the
Bond number and (b) the viscosity ratio. The lines are the result of a linear fit and the gradients are stated.

equivalent to

Bo <
3β(t )λ

2{γ (t )(1 − D) + λ[α(t ) − γ (t )(1 − D)]} . (12)

Since the functions α(t ), β(t ) and γ (t ) contain the complexity associated with the evolving
shape of the interface and stress discontinuity across it, it is difficult to determine any more about
their properties without further sophisticated analysis. Therefore, we define the time t = T as that
which maximizes the right-hand side of Eq. (12), and further define δ = 2γ (T )/[3β(T )] and ε =
2α(T )/[3β(T )]. The condition for stalled sinking then becomes

Bo <
λ

δ(1 − D) + λ[ε + δ(1 − D)]
. (13)

Given the sparsity of constraints on the transition curve (Fig. 7), we do not perform a quantitative
fitting, but rather explore the different values of δ and ε that produce a curve correctly describing
the observed transition. We find that Eq. (13) accurately describes the transition if δ = 2.5 ± 0.4
and ε = 5.0 ± 0.9.

E. Sinking timescale

We define the sinking time as the time from when the sphere first touches the original plane
of the interface to the moment when it loses contact with the bulk of the upper phase (i.e., when
the tail or bridge connecting the sphere to the bulk of the upper layer snaps). Tables 3 and 4 in
the Supplemental Material [51] show the raw data. The formation of a contact line during the film
drainage mode suggests that film drainage and tailing modes have different dynamics. Therefore
they are considered separately.

By grouping experiments with similar values of λ and Bo , we see that in the film drainage
regime, the dimensionless sinking time decreases with the Bond number [Fig. 8(a)] and increases
with the viscosity ratio [Fig. 8(b)]. Neither of these trends are surprising. As the viscosity ratio
increases, the strain rate induced in the lower fluid by the sphere decreases, and so the velocity of the
displaced fluid decreases (i.e., sinking takes longer). Additionally, as the Bond number increases,
the magnitude of gravitational forces increases relative to the IFT forces, leading to more rapid
sinking. Both relationships appear to be well fitted by power laws, so we assume that the sinking
time can be described by a relationship of the form

ts
tcu

∼ Bo aλb (14)
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or

ln

(
ts
tcu

)
∼ a ln Bo + b ln λ. (15)

A planar fit to all the data yields a = −0.80 ± 0.05 and b = 0.80 ± 0.02 (Fig. 9), which has a
chi-squared value of 0.939. This means that the empirical law for the film drainage configuration
can be expressed as

ts
tcu

∼
(

λ

Bo

)0.8

=
(

λ

Bo

)4/5

. (16)

In their investigation of the low-Reynolds-number sinking of a sphere through an air-liquid
interface, Lee and Kim [35] assumed a sinking configuration similar to the film drainage seen here.
Their simple scaling analysis assumes a constant sinking velocity and predicts that, for a constant
MDR and contact angle, ts/tcl ∼ (Bo )−1 [see Eq. (6)], which corresponds to ts/tcu ∼ (λ/Bo )−1

[35]. This is close to our result, with the discrepancy likely due to the assumption of a constant
velocity in the scaling analysis, which while possibly valid for an air-water interface, is certainly
not for our experiment.

For the tailing regime, the dependence of the sinking time on Bo and λ is more complicated,
with no simple power-law relationship. To simplify the problem we divide the sinking process
into three stages (Fig. 10): (a) pushing (timescale tp), when the sphere traverses the plane of the
initial interface; (b) thinning (tc), when the tail thins until its minimum thickness is equal to the
capillary length; and (c) snapping (ts), when the tail pinches off. Although somewhat arbitrary,
these definitions are motivated by the processes that must occur at each stage. The pushing stage
requires the displacement of both fluids as the sphere settles. The thinning stage involves the balance
between downward entrainment and buoyant rise of the tail fluid. Finally, once the column thickness
becomes comparable to lc, the IFT acts to snap the tail.

Figure 10 shows that tp/tcu decreases with Bo , with the rate of change greatest close to Bo = 1.
This is intuitive since as Bo → 1, the relative strength of IFT forces increases, thus requiring more
kinetic energy from the sphere to deform the interface, which decelerates the sphere and increases
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FIG. 10. Tailing mode was divided into three stages: (a) pushing, when the sphere traverses the plane of
the initial interface, (b) thinning, when the tail thins until its thickness is equal to the capillary length, and (c)
snapping, when the tail pinches off. The dependence of the dimensionless time of each stage on Bo and λ

is shown. (a) tp/tcu decreases with Bo for Bo > 1 and is nonmonotinic with λ. (b) tt/tcu decreases with Bo
and increases with λ. Linear fits are provided for Bo > 1 and Bo ≈ 1, λ < 1. Measurement uncertainty is
comparable to the symbol size. One point (circled with a dashed line) has an anomalously high value. c) ts/tcu

depends only weakly on Bo , as can be seen by the collapse of the curves on the plot against λ.

the sinking time. The dependence on λ is nonmonotonic, with each curve displaying at least one
minimum. For all values of Bo investigated, there is a minimum at 0.2 < λ < 0.5. This is perhaps
surprising, because one might expect the tp/tcu to decrease continuously as λ decreases, since this
corresponds to a reduction in the relative viscosity of the lower fluid. However, decreasing λ also
increases the volume of the upper phase film that is entrained during the pushing process. This
reduces the net density of the sphere and entrained fluid, which can also increase tp/tcu. Therefore
there is a critical value of λ at which the entrained volume becomes large enough to overcome the
decreasing viscous resistance. The curves for Bo ≈ 1, 1.5, and 2.5 also contain a second minimum
at λ ≈ 5, which can be explained by the increasing effect of IFT as Bo decreases towards 1. The
increase in IFT reduces the volume of entrained fluid, increasing the bulk density of the sphere and
the enveloping fluid, which decreases the sinking time.

The behavior of tt/tcu is simpler and decreases with Bo . As with the pushing stage, a smaller Bo
means the IFT is strong enough to support the hydrostatic pressure gradient across the tail interface
and so reduces the inward velocity of the surrounding fluid. Additionally, tt/tcu increases with λ,
since increasing in the relative viscosity of the lower fluid slows the sinking of the sphere. For
Bo > 1, this can be well described by a power law with exponent 3.7 ± 0.2. For Bo = 1, however,
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tt/tcu increases with λ for λ < 1, although at a faster rate than for Bo > 1. For λ > 1, there seems
to be little dependence on Bo . The different behavior observed for Bo > 1 and Bo = 1 can be
explained by the equality of the sphere radius and capillary length. This means that the tail thickness
is only a little larger than lc throughout the thinning stage, which increases the significance of IFT
forces. Different behaviors for Bo = 1 and Bo > 1 can also be seen in measurements of the tail
length at the moment of snapping (Supplemental Material [51]).

Finally, Fig. 10(c) shows that the snapping timescale ts/tcu is only weakly dependent on Bo and
negligible for λ � 10. This is because snapping occurs just below the initial plane of the interface
and away from the sphere and so is independent of the sphere size.

IV. CONCLUSIONS

The low-Reynolds-number gravitational settling of a sphere onto and through a fluid interface has
been investigated experimentally for a range of viscosity ratios and Bond numbers, and observations
have been made of the deformational mode of the interface and the time taken for sinking. Viscosity
ratios were varied between 10−2 and 103 and Bond numbers between 1 and 5. Two different modes
of interfacial deformation were observed: a tailing mode and a film drainage mode. In the tailing
mode the interface is significantly deformed during the approach of the sphere. As the sphere passes
through the plane of the undeformed interface, it is enveloped by a layer of the upper phase, which
forms a tail behind the sphere connecting it to the bulk of the upper fluid. Eventually this tail
becomes unstable and snaps. In the film drainage case, the interface deforms to a much smaller
extent, and the sphere impacts the interface to form either a contact line or a very thin wetting film.
The sphere then slowly sinks through the interface. For Bo > 1 the transition from tailing to film
drainage appears independent of the viscosity ratio and occurs at λ ≈ 30, with the tailing regime
occurring for smaller viscosity ratios. For Bo � 1 the viscosity ratio at which the transition occurs
shifts to lower values. The regime diagram of Fig. 7 can be useful for choosing suitable fluids for
particle coating Tsai et al. [2] and informing models describing the roles of crystals in magma
mixing [9].

We also investigated how the sinking time scales for the different deformational modes. For the
film drainage regime, we find for the first time that the sinking time can be described by the power-
law relationship ts/tcu ∼ (λ/Bo )4/5 (Fig. 9). The relationship is more complicated for the tailing
mode since λ and Bo have different effects at different stages of sinking. Generally, decreasing Bo
increases the sinking time due to the increasing strength of IFT forces, but increasing λ can either
increase or decrease the time required for the sphere to traverse the interface, dependent upon the
volume of upper phase fluid entrained with the sphere.

This study has provided new empirical results for the timescale of sinking and a regime diagram
for the sinking regime. Simple scalings have been unable to reproduce the observed behavior,
suggesting more complete theoretical models are required. Such models will need to account for
the effect of entrained upper fluid on the dynamics of the sphere and the time dependence of the
buoyancy, viscous and IFT forces as the sphere sinks. Including these features would be challenging
in a theoretical model, and full numerical simulation may be required to obtain useful results.
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