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Analogue materials are commonly used in volcanology to perform scaled laboratory experiments. Analogue ex-
periments inform on fundamental fluid dynamic, structural andmechanical processes that are typically very dif-
ficult to observe and quantify directly in the natural volcanic system. Here we investigate the suitability of an
aqueous solution of hydroxyethyl cellulose polymer (HEC) for use as a lava/magma analogue, with a particular
focus on its rheological behaviour. We characterize a range of physical properties as functions of the concentra-
tion and temperature of the solution: density; specific heat capacity; thermal diffusivity; thermal conductivity;
surface tension; as well as rheology. HEC has a non-Newtonian, shear-thinning rheology that depends on the
concentration and temperature of the solution. We show that the rheology is well described by the Cross
model, which was originally developed for polymer solutions, but has also been applied to bubbly magmas.
Using this similarity, an approach for scaling analogue experiments that use shear-thinning polymers, like HEC,
to bubbly magma is presented. A detailed workflow and a spreadsheet are provided to allow experimentalists
to investigate the effects of non-Newtonian behaviour in their existing laboratory set-ups. This contribution
will allow for themore complex, but oftenmore realistic case of bubble-bearingmagmas to be rigorously studied
in experimental volcanology.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Laboratory experiments offer a way to systematically observe and
quantify volcanologically relevant processes that are not accessible to
direct observation in thefield. Experimentsmay use natural or analogue
materials, and both approaches have advantages and disadvantages.
Natural materials, or synthetic materials with the same composition,
have the advantage that their behaviour under given physical condi-
tions is expected to replicate directly their behaviour under the same
conditions in the volcanic system. However, the experiments must be
performed at high temperatures and pressures and, consequently, are
usually limited to small sample sizes (Gonnermann et al., 2017; Jones
et al., 2016; Quane and Russell, 2005; Renggli et al., 2016; Song et al.,
2016). A corollary of the small sample size is thatmeasurements on nat-
ural materials tend to be restricted to determining material parameters
(e.g. solubility, thermal properties, density, melt viscosity etc.) rather
than flow dynamics (Giordano and Dingwell, 2003; Holtz et al., 1995;
Lange et al., 1994; Ochs and Lange, 1999; Scheu et al., 2006). Moreover,
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measurements on natural materials are also generally subject to a high
degree of noise due to the natural variability within the samples them-
selves. This can be somewhat reduced by using synthetic magmas
(e.g., Lejeune and Richet, 1995; Yoder Jr and Tilley, 1962).

By contrast, analoguematerials are usually chosen to allow observa-
tions to take place at temperatures and pressures close to ambient. The
focus of many analogue experiments is to study bulk flow dynamics
and/or material properties associated with physical interactions
among phases. The choice of analoguematerial is determined by a num-
ber of considerations. 1) A specific physical propertymay be required to
facilitate measurements (e.g. transparency for optical measurements).
2) Scaling considerations inform the material properties required for
the flow in the natural and experimental systems to be in the same dy-
namic regime (e.g. laminar vs turbulent, ductile vs brittle, viscous-
dominated vs surface-tension dominated etc.). 3) It may be desirable
to reduce complexity with respect to the natural system in order to iso-
late and characterize a single process, or a small number of processes,
for detailed investigation.

By using scaled, analogue experiments to isolate behaviours and re-
move multi-component complexity, many fundamental insights have
been made to several areas of volcanology. Examples focusing on
magma or lava dynamics include: lava flow emplacement (Blake and
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Symbols used in this study.

Symbol Parameter Units

α Thermal diffusivity m2 s−1

γ• Strain-rate s−1

€γ Time-derivative of strain-rate s−2

Γ Surface tension N m−1

δ Phase shift °
η Apparent viscosity Pa s
ηr Relative viscosity –
ηr0 Zero-shear relative viscosity –
ηr∞ Infinite-shear relative viscosity –
η0 Zero-shear apparent viscosity Pa s
η∞ Infinite-shear apparent viscosity Pa s
ηn Dimensionless relative viscosity –
ηn0 Dimensionless zero-shear relative viscosity –
ηn∞ Dimensionless infinite-shear relative viscosity –
η ∗ Complex viscosity Pa s
η′ Dynamic viscosity Pa s
η″ Storage viscosity Pa s
κ Thermal conductivity W m−1 K−1

λr Structural melt relaxation timescale s
λm Maxwell relaxation timescale s
λb Bubble relaxation timescale s
μ0 Liquid/pure melt viscosity Pa s
μn Nominal Newtonian viscosity Pa s
μr Viscosity ratio –
ν Velocity m s−1

ρ Density kg m−3

τ Shear tress Pa
ϕ Bubble volume fraction –
ω Angular frequency rad s−1

a Bubble radius m
b Scale factor –
c Polymer Cross constant s
CP Specific heat capacity J K−1 kg−1

d Droplet or bubble diameter m
D Dyke width m
f Angular frequency Hz
g Acceleration due to gravity m s−2

G ∗ Complex storage modulus Pa
G′ Storage modulus Pa
G″ Loss modulus Pa
K Bubble suspension Cross constant (6/5) –
l Characteristic length scale m
L Vertical dyke length m
m Bubble suspension Cross exponent –
ml Mass of liquid kg
Nc Dimensionless Cross number –
NCs Scaled Cross number –
p Polymer Cross exponent –
P Pressure Pa
q Volume flux m3 s−1

Q Amount of heat added J
t1/2 Time taken to reach half max. temp. s
T Temperature °C or K
x Sample thickness m
Xc HEC concentration –
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Bruno, 2000; Castruccio et al., 2010); the rheology of crystal and bubble
bearingmagmas (Cimarelli et al., 2011;Mueller et al., 2009; Truby et al.,
2015); basaltic magma degassing (Namiki and Manga, 2008; Palma
et al., 2011) and basaltic eruption dynamics (Del Bello et al., 2015;
Jones et al., 2019; Seyfried and Freundt, 2000). Although previous stud-
ies have advanced our understanding of volcanic processes, they com-
monly use Newtonian fluids as analogues. Whilst this simplifies the
physics of the problem, in nearly all natural contexts the magma will
contain bubbles and therefore exhibit a shear-thinning rheology
(Llewellin and Manga, 2005; Mader et al., 2013; Rust and Manga,
2002a). Therefore, to better replicate the natural system, it would be
useful to perform experiments using a fluid that has a non-Newtonian
rheology under the shear-rates attained. The simplest approach is to
add bubbles to a Newtonian analogue fluid (Bagdassarov and
Pinkerton, 2004; Rust and Manga, 2002b; Soule and Cashman, 2005).
However, the addition of bubbles poses several experimental chal-
lenges. Firstly, bubble suspensions are opaque, even at low gas volume
fractions. This inhibits visualization of the fluid dynamical processes oc-
curringwithin the experiment. Secondly, the rheology of the suspension
depends on the size distribution of the bubbles, which is difficult to con-
trol and measure. Lastly, as bubbles are less dense than the host fluid,
they will rise during the experiment adding further complexity to the
fluid dynamics operating. We therefore seek an analogue that is trans-
parent and has a shear-thinning rheology that replicates that of a bubble
suspension.

Some previous studies have used polymeric solutions for their
shear-thinning rheology. To date such studies have beenmainly focused
around magma degassing and bubble dynamics. Examples include: hy-
droxypropyl methyl-cellulose to investigate the rise and formation of
bubble chains (Kliakhandler, 2002); aqueous solutions of
cetyltrimethylammonium bromide and sodium salicylate to study
degassing dynamics through a thin viscoelastic layer (Vidal et al.,
2011); a commercial hair dressing gel to investigate magma degassing
regimes (Divoux et al., 2011, 2009); aqueous solutions of polyacryl-
amide and carboxymethylcellulose (CMC) mixed with glycerol and
water to investigate stress and relaxation around bubbles during their
rise (Li et al., 2004); aqueous solutions of CMC in exchange flow exper-
iments (Huppert and Hallworth, 2007); aqueous solutions of cellulose-
ester in analogue experiments for basaltic conduit flow (Seyfried and
Freundt, 2000); and aqueous solutions of hydroxyethyl cellulose
(same chemical name as used in this study but sourced from a different
manufacturer with an unknown molecular weight) in bubble growth
and expansion experiments (Zhang, 1998; Zhang et al., 1997). Although
some of these previous studies describe the rheology of these non-
Newtonian fluids as a function of strain-rate, scaling to the natural sys-
tem has been limited to simple comparison of rheological properties
(e.g. both magma and the chosen analogue fluid have a shear-thinning
rheology; Divoux et al., 2011, 2009; Vidal et al., 2011). Consequently,
there is no complete and rigorous scaling to the natural volcanic system.

Here, we characterize a shear-thinning polymer (hydroxyethyl cel-
lulose, HEC) that is viscoelastic, transparent and has a highly adjustable
viscosity over a commonly used shear-rate range making it a suitable
analogue material for many existing scaled experimental set-ups. Spe-
cifically, we use HEC manufactured by the Dow Chemical Company
with the trade name Cellosize™ and grade QP 52000H. We focus on
quantifying the polymer rheology, since that is essential for scaling
any analogue experiment influid dynamics.We also determine the den-
sity and thermophysical properties (specific heat capacity, thermal dif-
fusivity and thermal conductivity), which are important for scaling
experiments involving convection, and surface tension, for experiments
involving bubble or gas slug rise, for example. The discussion focusses
on the use of HEC and shear-thinning polymers in scaled experiments
of volcanic flows. We find that HEC provides a useful analogue for bub-
bly magma over the conditions commonly encountered in existing ex-
perimental devices. For a full list of parameters and associated
notation used throughout this paper, refer to Table 1.
2. Hydroxyethyl cellulose

2.1. Chemical properties

Hydroxyethyl cellulose (HEC) is a water-soluble polymer that is
used in the cosmetics, food, and pharmaceutical industries as a thicken-
ing and gelling agent. The chemical structure is shown by Fig. S1 in the
Supplementary Information. HEC is available under various trade
names, including Natrosol™ (Ashland Inc.), Clearcel™ (Chemcolloids
Ltd.), and Cellosize™ (Dow Chemical Company). The latter is used in
this study. Cellosize™ is available in two types: QP which disperses rap-
idly and dissolves in solution, andWPwhich hydrates rapidly and tends
to aggregate. Each type comes in a range of viscosity grades (Dow,
2005). In this study, we use grade QP 52000H because it dissolves easily
and, at low shear rates, has a viscosity similar to commonly used
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analogue fluids (e.g. golden syrup). In general, higher molecular weight
grades of HEC have higher viscosity at the same concentration, and are
more strongly shear thinning. This behaviour arises principally from
the greater degree of entanglement of highermolecularweight polymer
chains.

2.2. Preparing HEC solutions

Solutions of 0.5, 0.75, 1, 1.25, 1.5 and 1.75wt% concentrations (Xc) of
Cellosize QP 5200H (hereafter referred to as ‘HEC’) in tap water
(pH 7.85 ± 0.03) were produced. For a 1 wt% solution we add 1 g of
HEC powder to 99 g of water. HEC is hygroscopic and therefore gains
up to 2.5% mass by the addition of moisture at standard laboratory con-
ditions (5–6 g m−3 humidity); in this study we use HEC that has been
stored and prepared under these typical conditions. The uncertain de-
gree of hydration leads to an uncertainty in the weighed mass of the
HEC powder of up to 2.5%; hence, the uncertainty in the concentration
of the resulting solutions is also approximately 2.5% of the calculated
value – this uncertainty should be propagated when applying any of
the empirical models for material properties presented later in
Sections 3 and 4. The uncertainty resulting from variable hydration
dominates the small error associated with the precision of the balance
used to weigh the powder and water. The beaker containing the solu-
tion was placed in a bowl of warm water (~55 °C) and stirred slowly,
to avoid the introduction of bubbles, for 2–10 min until it thickened.
The time for thickening depends on many factors such as temperature
(higher temperatures reduce thickening time) and pH (higher pH
values reduce thickening time). The thickened solution was transferred
into an airtight container for storage to minimize dehydration, contam-
ination andmould formation. The rheology of HEC solutions can depend
on the pHof thewater, so it is important, when preparingHEC solutions,
to ensure that a stable pH is maintained (Dow, 2005).

All the samples characterized in this study were of small volume
(~300 ml). If large volumes (of several litres or more) of HEC are re-
quired, then a different approach is recommended. Firstly, put a
known volume of hot (~50 °C) water in a large mixing bucket and
slowly and steadily, over the course of a fewminutes, add theHEC pow-
der to reach the desired concentration. During the gradual powder addi-
tion, the solution should be stirred continuously with an electric paddle
mixer to avoid aggregation until the solution thickens (around 10 min,
but longer for colder water). Given the greater uncertainty in the con-
centration value when preparing large volumes we recommend that
the concentration should be determined by characterising the rheology
of an aliquot.

3. Rheology

3.1. Magma rheology

Pure silicate melts are Newtonian for strain-rates �γ≪1=λr where λr
[s] is the structural relaxation time of the melt (Dingwell and Webb,
1990, 1989; Giordano et al., 2008; Giordano and Dingwell, 2003; Hess
and Dingwell, 1996). A Newtonian liquid deforms with strain-rate γ•

[s−1] proportional to the applied stress τ [Pa]; the constant of propor-
tionality is the viscosity μ0 [Pa s]:

τ ¼ μ0 γ
• ð1Þ

The viscosity of natural silicate melts spans a huge range, ~10−1–
1012 Pa s, as silica content, temperature and dissolved water content
all exert a strong control on melt viscosity (Giordano et al., 2008). The
viscosity of silicate melts is comprehensively reviewed by Giordano
et al. (2008).

In volcanic systems puremelts are rare, andmagma is usually amul-
tiphase suspension composed of a melt (the liquid phase with Newto-
nian viscosity μ0) that suspends bubbles (gas) and/or crystals (solid).
The addition of bubbles and/or crystals induces a strain-rate dependent
(non-Newtonian) rheology. It is therefore useful to define an apparent
viscosity η [Pa s], which is the ratio of stress to strain-rate at any given
strain-rate. Furthermore, the ratio of the apparent viscosity of the sus-
pension to the viscosity of the suspending liquid is termed the relative
viscosity ηr= η/μ0. In this workwe focus on the rheology of bubble sus-
pensions. Bubbles introduce shear-thinning rheology that can be char-
acterized by the dimensionless capillary number Ca.

Ca ¼ λb γ
• ð2Þ

where λb = μ0a/Γ is the bubble relaxation time [s], a [m] is the unde-
formed spherical bubble radius, and Γ [N m−1] is the surface tension.
At low Ca the surface tension stress dominates so the bubbles remain
close to spherical in shape and act to increase the suspension viscosity.
Conversely, at high Ca viscous stress dominates so the bubbles become
deformed and act to decrease the suspension viscosity (Llewellin and
Manga, 2005; Rust and Manga, 2002a; Stein and Spera, 2002, 1992).

Previous rheological measurements on both bubbly analogue sus-
pensions and bubbly silicate melts have shown that the rheology of a
bubble suspension is shear thinning (Llewellin et al., 2002; Rust and
Manga, 2002a; Stein and Spera, 2002; Truby et al., 2015). To illustrate
this we have compiled data from three of these previous studies that
use suspensions with several different bubble volume fractions ϕ de-
formed at a range of capillary numbers (Fig. 1a). These data show that
the addition of a suspended gas phase to a Newtonian liquid introduces
non-Newtonian behaviour, such that Eq. (1) is insufficient to describe
the rheology. At high and low Ca, asymptotic limits of relative viscosity
are reached (Llewellin andManga, 2005; Pal, 2003). Mader et al. (2013)
present these limits of zero-shear relative viscosity ηr0 and infinite-
shear relative viscosity ηr∞ as functions of bubble volume fraction:

ηr0 ¼ ηo
μo

¼ 1−ϕð Þ−1 ð3Þ

ηr∞ ¼ η∞
μo

¼ 1−ϕð Þ5=3 ð4Þ

where ηo and η∞ are the apparent viscosity of the suspension in, respec-
tively, the low and high strain-rate limits:

η0 ¼ lim
γ•→0

η γ•
� � ð5Þ

η∞ ¼ lim
γ•→∞

η γ•
� � ð6Þ

At intermediate shear rates, the relative viscosity falls between ηr∞
and ηr0, and is a function of Ca as well as ϕ. The viscosity can be written
in the form of a Cross model valid for steady simple-shearing flow
(Mader et al., 2013; Rust and Manga, 2002b):

ηr ¼ ηr∞ þ ηr0−ηr∞
1þ KCað Þm ð7Þ

where K=6/5 andm=2 for a monodisperse bubble population. Poly-
disperse suspensions can be accounted for by adjusting m to lower
values of ~1 (Mader et al., 2013). The Cross model for bubble suspen-
sions assumes laminar flow and has only been validated on suspensions
with gas volume fractions in the range 0 ≤ϕ ≤ 0.46. Upon transition from
a bubble suspension to a polyhedral foam, which occurs at ϕ~0.74, the
rheological characteristics are likely to be very different (Mader et al.,
2013). Our analysis presented herein therefore assumes laminar flow
and a bubble suspension, rather than foam, rheology.



Fig. 1. (a) A selection of data from previous experimental studies on bubble bearing
suspensions at a range of bubble volume fractions (ϕ). Three Cross model fits (Eq. (7))
are plotted for 0.05, 0.16 and 0.45 ϕ. (b) Cross model curves (Eq. (8)) for a hypothetical
shear-thinning polymer with a zero-shear apparent viscosity η0 of 90 Pa s, an infinite-
shear apparent viscosity η∞ of 1 Pa s, a Cross constant c of 15 s and exponents p 0.5, 0.8,
1.0, 1.2 and 2.
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3.2. Polymer rheology

Some polymers also show shear-thinning rheology (Fig. 1b). Aswith
bubble suspensions, these polymers have an apparent viscosity that
tends to an asymptotic value at high and low values of strain-rate, as
given by Eqs. (5) and (6). The Cross model (Cross, 1965) was originally
developed to describe polymer rheology and is widely used in polymer
science, where it is written in the form (compare with Eq. (7) above):

η ¼ η∞ þ η0−η∞
1þ cγ•ð Þp ð8Þ

where η is the apparent viscosity of the polymer [Pa s], c [s] is the Cross
constant and p is the Cross exponent (Fig. 1b). Increasing the Cross ex-
ponent increases the gradient of the curve between the viscosity limits,
whilst varying the Cross constant translates curves along the strain-rate
axis (Fig. 1b). When using Eqs. (3)–(8) particular care should be taken
with subscripts to ensure that the correct quantity is used. The sub-
scripts denote different viscosity values (e.g. apparent vs. relative vis-
cosity) and, for the reader's ease, a list of notation is provided in Table 1.
The fact that the rheology of both HEC and bubble suspensions can
be described using a Cross model makes it straightforward to scale the
rheologies of the two fluids. This is explored in detail later, in Section 5.

3.3. Viscoelasticity and the Cox-Merz rule

Both bubble suspensions and polymer solutions can be viscoelastic.
This means that the deformation in response to a driving stress can in-
volve both elastic (recoverable) and viscous (non-recoverable) strain.
The degree of viscous and elastic response depends on the timescale
of deformation in relation to the relaxation timescale of the material
(Barnes et al., 1989). Viscoelastic behaviour can be investigated under
oscillatory rheometry (Section 3.4) in which a sinusoidally varying
stress is applied to the sample.

The complex shear modulus G ∗ [Pa] describes the resistance to de-
formation of a viscoelasticmaterial.G ∗ is comprised of the storagemod-
ulus G′ [Pa] and the loss modulus G″ [Pa] which characterize elastic and
viscous behaviour respectively:

G� ¼ G0 þ iG′′ ð9Þ

where i ¼
ffiffiffiffiffiffiffiffi
−1

p
. Under oscillatory rheometry, frequencies can be iden-

tified for which viscous (G″ N G′) or elastic (G′ N G″) behaviour domi-
nates (Ferry, 1980). The phase shift δ between the applied stress
waveform, and resulting strain waveform describes the relative contri-
bution of viscous and elastic deformation such that δ = 0° for purely
elastic materials and δ= 90° for purely viscous (Newtonian) materials.
Furthermore, the Maxwell relaxation time λm [s] can be defined as the
inverse of the frequency at which G″= G′ in the frequency [Hz] domain
(Schellart, 2011).

It is also common for viscoelastic materials to be described by the
complex viscosity η ∗ [Pa s], rather than the complex shear modulus:

η� ¼ η0 þ iη′′ ð10Þ

where η′ [Pa s] is the dynamic viscosity and η″ [Pa s] is the storage vis-
cosity. These parameters are related to the complex shear modulus via
the angular frequency of oscillation ω [rad s−1] such that η ∗ = G ∗/iω.
A purely empirical relationship described by Cox and Merz (1958) has
provided a link between steady state and oscillatory rheometry mea-
surements. They observed ηðγ•Þ ¼ jη�ðωÞj , i.e. that the magnitude of
the complex viscosity as a function of angular frequency under oscilla-
tory rheometry is the same as the apparent viscosity as a function of
strain-rate under steady rheometry; this defines the Cox-Merz rule
(Cox and Merz, 1958).

The Cox-Merz rule has been shown to be approximately valid for
bubble suspensions (Mader et al., 2013). Flow conditions are unsteady
under oscillatory rheometry, so the capillary number Ca is undefined,
hence Eq. (7) cannot be applied. Llewellin et al. (2002) consider flow
of bubble suspensions under unsteady conditions, and introduce the dy-
namic capillary number Cd ¼ λb€γ=γ

• where €γ [s−2] is the time-
derivative of the strain-rate. Under oscillatory rheometry, this becomes
Cd = λbω, and the Cox-Merz rule can be expressed as:

η Cað Þ ≈ η� Cdð Þj j ð11Þ

This approximation underpins a more-general form of Eq. (7) that
can be applied to both steady and unsteady bubbly flows, under arbi-
trarily large strains (Mader et al., 2013):

ηr ¼ ηr∞ þ ηr0−ηr∞
� �

1þ Cxð Þm ð12Þ

where Cx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca2 þ Cd2

p
.



Fig. 2.Cone and Peltier platemeasuring geometry usedwith the TA instruments Discovery
Hybrid HR2 rotational rheometer. After the sample was loaded the solvent trap was filled
with deionised water during each experiment to prevent sample dehydration upon
heating.
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3.4. Method of measurement

Two types of rheometry were performed on HEC solutions; firstly,
rotational rheometrywas used to characterize the steady-state viscosity
and shear-thinning rheology. Secondly, oscillatory rheometry was used
to quantify both the viscous and elastic components of deformation
(Mezger, 2006; Whorlow, 1992). All the rheological characterization
was performed on a TA Instruments Discovery Hybrid HR2 rheometer
at Durham University, using a cone and plate measuring geometry,
Fig. 3. Apparent viscosity of HEC concentrations: (a) 0.5 wt%; (b) 0.75 wt%; (c) 1.0 wt%; (d) 1.
rotational rheometry (coloured dots). Solid lines show associated best fit curves using the C
calculated with seven repeat measurements when deliberately slightly under- and over-filling
with a temperature-controlled Peltier plate (Fig. 2). In all experiments
a solvent trap, filled with deionised water, was used to prevent the so-
lutions dehydrating during measurement. Before the rheometric mea-
surements, the rheometer and sensor system were calibrated for
internal friction, thermal expansion, inertia and precession upon rota-
tion. Each time a new aliquot of sample was loaded, it was left for
10 min to reach thermal equilibrium.

For the rotational rheometry the shear stress was measured at
strain-rates from 0.01 s−1 to 1000 s−1 with 10 measurement points
per decade, distributed logarithmically. Using this experimental ap-
proach, viscosities were determined for all HEC concentrations at tem-
peratures: 5 °C, 10 °C, 15 °C, 20 °C, 30 °C, 40 °C, 50 °C and 60 °C. Lastly,
to test HEC stability over time, a 1.25 wt% solution was measured at
20 °C after 0, 9, 11, 15 and 21 days stored in an air tight container at
lab temperature.

For the oscillatory measurements, a stress amplitude sweep (0.01 to
1000 Pa) was first performed at a 10 rad s−1 constant angular fre-
quency. From this test the material's linear viscoelastic region (LVE)
was defined; for stresses in this region material properties such as the
complex viscosity, phase angle, loss and storage modulus are approxi-
mately constant. A frequency sweep (0.1 to 100 rad s−1) was then per-
formed at a constant stress within the LVE region (1 to 0.1 Pa in this
25 wt%; (e) 1.5 wt% and (f) 1.75 wt% measured at temperatures from 5 °C to 60 °C under
ross model (Eq. (8)). Error bars are smaller than data points; maximum 1σ = 0.77 Pa s
the sample.
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study) in order to characterize the time-dependent rheology. All oscilla-
tory tests were performed at 20 °C.

3.5. Results and analysis

3.5.1. Shear-rate dependent viscosity
All concentrations of HEC exhibit a shear-thinning rheology (Fig. 3)

that is well described by the Cross model (Eq. (8)) with η0, η∞, c, and p
as fitting parameters. For shear rates in the measurable range
(0.01 s−1 to 1000 s−1) the data tend toward a zero-shear apparent vis-
cosity η0 at low strain-rates, and a much lower infinite-shear apparent
viscosity η∞ at high strain-rates. Measurements become unreliable at
the extremely low viscosities encountered at very high strain-rates, so
we are not able to reach the infinite-shear apparent viscosity η∞. None-
theless, the Cross model (Eq. (8)) provides a good fit to the data across
the measured range. Curve fitting is subject to the constraint that η∞
must be greater than or equal to the viscosity ofwater at the experimen-
tal temperature. This prevents the production of physically-implausible
values of η∞ during model fitting; in practice, the best-fit value for η∞ is
Table 2
Full fitting parameters for Cross model parameters for all HEC concentrations (Xc) as a
function of T [°C]. Note that η∞ is simply the viscosity ofwater at the specified temperature.
These individual models for each concentration are more accurate than the more general
models (Table 3).

Xc [wt%] T [°C] η0 [Pa s] η∞ [Pa s] c [s] p R2

1.75 5 444 1.50 × 10−3 11.4 0.772 0.9996
1.75 10 338 1.30 × 10−3 9.54 0.761 0.9996
1.75 15 251 1.14 × 10−3 8.14 0.749 0.9996
1.75 20 202 1.00 × 10−3 7.43 0.737 0.9997
1.75 30 136 7.97 × 10−4 6.08 0.714 0.9995
1.75 40 83.1 6.51 × 10−4 4.34 0.698 0.9995
1.75 50 52.8 5.44 × 10−4 4.09 0.670 0.9996
1.75 60 33.1 4.63 × 10−4 3.16 0.651 0.9996
1.5 5 230 1.50 × 10−3 8.90 0.752 0.9997
1.5 10 175 1.30 × 10−3 7.37 0.739 0.9997
1.5 15 145 1.14 × 10−3 6.71 0.727 0.9996
1.5 20 107 1.00 × 10−3 5.72 0.717 0.9996
1.5 30 61.8 7.97 × 10−4 3.70 0.700 0.9996
1.5 40 38.2 6.51 × 10−4 3.12 0.679 0.9995
1.5 50 25.6 5.44 × 10−4 2.09 0.654 0.9993
1.5 60 17.1 4.63 × 10−4 2.11 0.624 0.9992
1.25 5 89.7 1.50 × 10−3 4.90 0.735 0.9997
1.25 10 74.3 1.30 × 10−3 4.96 0.714 0.9997
1.25 15 57.1 1.14 × 10−3 4.23 0.703 0.9997
1.25 20 39.0 1.00 × 10−3 2.81 0.701 0.9996
1.25 30 26.2 7.97 × 10−4 2.44 0.671 0.9996
1.25 40 15.4 6.51 × 10−4 1.70 0.649 0.9996
1.25 50 10.3 5.44 × 10−4 2.00 0.611 0.9993
1.25 60 5.98 4.63 × 10−4 1.24 0.603 0.9997
1 5 33.6 1.50 × 10−3 3.60 0.699 0.9998
1 10 25.1 1.30 × 10−3 2.78 0.684 0.9997
1 15 19.3 1.14 × 10−3 2.26 0.669 0.9997
1 20 15.4 1.00 × 10−3 1.91 0.660 0.9995
1 30 7.69 7.97 × 10−4 0.992 0.651 0.9998
1 40 4.64 6.51 × 10−4 0.662 0.626 0.9997
1 50 2.94 5.44 × 10−4 0.473 0.606 0.9997
1 60 1.95 4.63 × 10−4 0.374 0.575 0.9993
0.75 5 8.24 1.50 × 10−3 1.34 0.659 0.9999
0.75 10 5.46 1.30 × 10−3 0.920 0.666 0.9988
0.75 15 4.20 1.14 × 10−3 0.712 0.635 0.9998
0.75 20 3.92 1.00 × 10−3 0.939 0.612 0.9994
0.75 30 2.10 7.97 × 10−4 0.536 0.584 0.9989
0.75 40 1.34 6.51 × 10−4 0.431 0.550 0.9971
0.75 50 0.941 5.44 × 10−4 0.613 0.469 0.9919
0.75 60 0.536 4.63 × 10−4 0.239 0.486 0.9945
0.5 5 2.71 1.50 × 10−3 3.00 0.518 0.9938
0.5 10 1.29 1.30 × 10−3 0.774 0.534 0.9978
0.5 15 0.727 1.14 × 10−3 0.250 0.567 0.9992
0.5 20 0.516 1.00 × 10−3 0.163 0.568 0.9980
0.5 30 0.409 7.97 × 10−4 0.209 0.500 0.9964
0.5 40 0.205 6.51 × 10−4 0.0700 0.524 0.9971
0.5 50 0.113 5.44 × 10−4 0.0263 0.557 0.9991
0.5 60 0.0753 4.63 × 10−4 0.0207 0.502 0.9987
always equal to the viscosity ofwater (Table 2). ComparingHEC concen-
trations (Fig. 3a to f) it can be seen that solution viscosity increaseswith
increasing concentration. Also, for all concentrations, increasing the
temperature reduces the viscosity of the solution at all strain-rates, al-
though this reduction is most pronounced at low strain-rates. A full
list of Crossmodel parameters derived from fitting to data are presented
in Table 2.

The systematic changes in Crossmodelfits shown in Fig. 3 are encap-
sulated in systematic variation in the parameters η0, c and p with tem-
perature and concentration (cf. Fig. 1b). For a given HEC concentration
these Cross parameters (η0, c and p) can be expressed as functions of
temperature in the form: η0 = A1e

A2T; c = B1e
B2T and p = C1T + C2,

where T is in Celsius. These relationships are purely empirical and in
each case we chose the simplest functional form that gives a good fit
to data with two fitting parameters. Fitting parameter values can be
found in Table 3.

By adding the Cross parameters' dependency on HEC concentration
we produce a set of purely empirical Eqs. (13)–(15) for η0, c and p as a
function of temperature T [°C] and concentration Xc. These fits are
shown by the solid lines in Fig. 4. All the fits presented here are for
HEC concentrations ≥0.75 wt%, the 0.5 wt% data set has been excluded
from these fits as values are close to the rheometer sensor system sen-
sitivity limit (Fig. 4) and show considerably more scatter than for the
higher concentrations. The temperature and concentration dependence
of the zero-shear apparent viscosity (Fig. 4a) is well reproduced using
an exponential equation:

η0 ¼ D1eD2Xc−D3T ð13Þ

where D1 = 0.663 Pa s, D2 = 3.99 and D3 = 0.0516 °C−1; hence, η0 in-
creases exponentially with HEC concentration and decreases exponen-
tially with temperature. The only previous work describing the
rheology of HEC that we have found (Haas and Eloranta, 1965) charac-
terizes the zero-shear apparent viscosity for seven different concentra-
tions at 25 °C, and three different concentrations at 48 °C. They
propose a power-law relationship between zero-shear apparent viscos-
ity and concentration at 25 °C. The values of η0 that they report are
roughly two orders of magnitude higher than those in our study, at
Table 3
Cross model fitting parameters.

η0 fits in the form: η0 = A1e
A2T

Xc [wt%] A1 [Pa s] A2 [°C−1]

1.75 556.0 −0.04925
1.5 295.6 −0.05036
1.25 117.8 −0.05043
1.0 44.17 −0.05531
0.75 10.16 −0.05270
0.5 4.771 −0.11910

c fits in the form: c = B1e
B2T

Xc [wt%] B1 [s] B2 [°C−1]

1.75 12.31 −0.02410
1.5 10.25 −0.03024
1.25 5.872 −0.02714
1.0 4.519 −0.04645
0.75 1.325 −0.02503
0.5 2.500 −0.08379

p fits in the form: p = C1T + C2

Xc [wt%] C1 [°C−1] C2

1.75 −0.002206 0.7826
1.5 −0.002221 0.7628
1.25 −0.002438 0.7434
1.0 −0.002075 0.7060
0.75 −0.003712 0.6894
0.5 −0.0003835 0.5447



Fig. 4. Cross model parameters for all HEC concentrations as a function of temperature:
(a) the zero-shear apparent viscosity η0 plotted on a semi-log scale; (b) the Cross
constant c plotted on a semi-log scale and (c) the Cross exponent p, where the solid
lines represent Eqs. (13), (14) and (15) respectively. To determine the error associated
with Cross model fitting 10,000 least square regressions were applied to the raw
rheometry data, randomized within their 1σ range. This gave 1σ values of 0.00047,
0.00047 and 0.00002 for η0, c and p respectively. Error bars are smaller than the data
points. Data scatter is primarily associated with poor instrument sensitivity at low
viscosities.

Fig. 5. (a) A 1.25 wt% HEC solution measured on the day of production and 9, 11, 15 and
21 days afterwards under the same experimental conditions (20 °C, cone and Peltier
geometry; Fig. 2). (b) Sub-panel shows the pronounced decrease in the zero-shear
viscosity with increased solution age.
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the same concentration, suggesting that they used a HEC formulation
with a different molecular weight that is unspecified in their paper.

The Cross constant c can also be described using an exponential
form; c decreases rapidly with increased temperature such that:

c ¼ E1Xc−E2ð ÞeE3T ð14Þ
where E1=11.1 s, E2=7.00 s and E3=−0.0306 °C−1. Finally, the Cross
exponent p can be best described by a linear relationship:

p ¼ F1Xc−F2T þ F3 ð15Þ

where F1 = 0.0973, F2 = 0.00217 °C−1 and F3 = 0.615.
We also report changes in the solution apparent viscosity through

time after the initial preparation of the solution (Fig. 5). It should be
noted that the 500 ml sample (from which measured aliquots were
taken) was stored in an airtight container at standard lab temperatures
(18–21 °C). In general, the tests show a progressive decrease in viscosity
with age which is most pronounced at low-shear (Fig. 5b). If the sam-
ples were left open to contaminants, additional and more rapid degra-
dation would be expected. Qualitative observations suggest that
additional dehydration of HEC in an open container would generate a
high viscosity layer on the surface in contact with air. We suggest that
HEC solutions should be prepared immediately before use, particularly
in experimental set-ups using low shear-rates, and should not be stored
for long periods of time.
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3.5.2. Viscoelasticity
From the amplitude sweep (Fig. 6a) we can identify the LVE region;

this region extends to higher stresseswith increasedHEC concentration.
Stresses lower than 1 Pa (forXc ≥ 0.75) or 0.1 Pa (forXc b 0.75) fall within
the LVE region. Over the frequency range measured (0.1 to 100 rad s−1

or 0.016 to 15.92 Hz) all the HEC concentrations display viscoelastic be-
haviour (0 ° b δ b 90°). Elastic behaviour increases with increasing solu-
tion concentration and with increasing oscillation frequency (Fig. 6b).
All the HEC solution concentrations except from 0.5 wt% show an inter-
section between G′ and G″ (Fig. 6c). The position of this intersection in
the frequency [Hz] domain gives the Maxwell relaxation times λm [s]
(Table 4). We also present the complex viscosity as a function of fre-
quency for the HEC solutions studied (Fig. 6d). By comparison with
the rotational rheometry measurements (lines in Fig. 6d) it is clear
that HEC solutions follow the Cox-Merz rule given by Eq. (11) to a
close approximation.

4. Other properties of HEC

In this section, we present data for a range of other physical proper-
ties that are relevant to the effective scaling of HEC tomagma in the vol-
canic system. These properties include density, thermal conductivity,
thermal diffusivity, specific heat capacity and surface tension. For each
physical property we describe the volcanological motivation, the mea-
surement technique, and typical values for the HEC polymer. We note
that HEC has photoelastic properties (Dow, 2005) this is not investi-
gated further here, but could potentially be exploited to visualize
stresses within the material during flow.
Fig. 6. Viscoelastic properties of HEC all measured at 20 °C. (a) Loss and storage moduli during
(b) Phase angle δ for all HEC solutions at a range of frequenciesmeasured in the LVE region. All s
to guide the eye. (c) Loss and storagemoduli during a frequency sweep, the intersection betwee
(d) The magnitude of the complex viscosity as a function of angular frequency is shown in so
derived from steady rheometry (Fig. 4, Eqs. (13)–(15)). The close fit to the oscillatory data c
smaller than the data points.
4.1. Density

4.1.1. Background and magmatic properties
Measurements onmulti-component silicate liquids have shown that

their density is linearly dependent on temperature and also depends on
oxide concentration, such that the addition of low density oxides
(e.g., K2O and Al2O3) act to lower the silicate liquid density and the ad-
dition of high density oxides (e.g., MgO and FeO) act to raise the liquid
silicate density (Lange and Carmichael, 1987; Lesher and Spera, 2015).
It is also known that small concentrations of dissolvedwater and carbon
dioxide have a large effect on reducing the silicate melt density. For ex-
ample, adding 1 wt% water to a dry basaltic melt reduces its density by
~70 kg m−3 (Lange and Carmichael, 1990). Density is a parameter that
often enters into the scaling of fluid dynamic studies; one example is
the Reynolds number (Re), defined as: Re = ρνl/η. Where ρ [kg m−3]
is the density, ν [m s−1] is the fluid velocity, l [m] is a characteristic
length scale, and η [Pa s] is the apparent viscosity. The Reynolds number
is the ratio of inertial to viscous forces and is commonly used in volca-
nology, and beyond, to distinguish between laminar and turbulent
flow regimes. In analogue experiments we often wish to match the
Reynolds number of our experiments to the natural system. For a
given experimental set-up, the fluid viscosity and density must be ad-
justed to give an appropriate Re. In most cases it is more practical to
change the viscosity and measure the fluid density.

4.1.2. Method of measurement
HEC solutions were added to a calibrated 50 ml pycnometer flask,

heated to the measurement temperature and left to equilibrate at 10,
a stress amplitude sweep for all HEC concentrations at angular frequencyω= 10 rad s−1.
amples show viscoelastic behaviour. Lines are notmodel curves, but simply join data points
n the two curves for a given solution represents the inverse of theMaxwell relaxation time.
lid square data points. Lines represent the Cross model curves (Eq. (8)) using parameters
onfirms that the Cox-Merz rule holds for these solutions. Error bars on all subplots are



Table 4
Maxwell relaxation times calculated from Fig. 6c.

Xc [wt%] f [Hz] λm [s]

1.75 0.25 4.0
1.5 0.4 2.5
1.25 0.8 1.3
1.0 1.6 0.63
0.75 4.5 0.22

Table 5
Density fitting parameters as a function of temperature (shown in Fig. 7a).

Xc [wt%] G1 [kg m−3 °C−2] G2 [kg m−3 °C−1] G3 [kg m−3] R2

1.75 −0.0037 −0.0676 1006.2 0.9998
1.5 −0.0037 −0.0710 1005.7 0.9999
1.25 −0.0037 −0.0461 1004.4 0.9999
1.0 −0.0037 −0.0822 1004.4 0.9998
0.75 −0.0037 −0.0677 1003.3 0.9991
0.5 −0.0037 −0.0643 1002.4 0.9996
0.25 −0.0037 −0.0586 1001.5 0.9998
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20, 30, 40, 50, 60 and 70 °Cwithin a temperature-controlledwater bath.
During heating theHEC solutionwas able to overflow from thepycnom-
eter flask. Once equilibrated, the flask exterior was dried and then its
mass measured on a ±500 μg desktop balance.

4.1.3. Results and analysis
The density of HEC solutions is found to vary both as a function of

temperature and concentration (Fig. 7). Over the temperature range
Fig. 7. (a) Density of HEC solutions as a function of temperature. Error bars represent the
compound measurement error associated with each data point (typically ±
0.167 kg m−3). Lines represent Eq. (16) with the values listed in Table 5. 1σ error bars
are smaller than the data points. (b) The linear relationship between density and
concentration, colour contoured for temperature. Fits in the form of Eq. (17) using the
values listed in Table 6.
investigated (10 to 70 °C) the density of a particular HEC concentration
follows the purely empirical general expression:

ρ ¼ G1T
2 þ G2T þ G3 ð16Þ

where T [°C] is the temperature and G1 [kgm−3 °C−2], G2 [kgm−3 °C−1]
and G3 [kg m−3] are constants (Table 5). The density measurements
shown in Fig. 7 have a maximum uncertainty of ±0.168 kg m−3. Fur-
thermore, the concentration dependency at a specific temperature fol-
lows the empirical form:

ρ ¼ H1Xc þ H2 ð17Þ

where H1 [kg m−3] and H2 [kg m−3] are constants reported in Table 6.
HEC density is very similar to water, we therefore suggest that HEC
will be particularly useful for experiments that commonly use water
and inwhich buoyancy is important (e.g. analoguemagma intrusion ex-
periments; Kavanagh et al., 2018).

4.2. Thermophysical properties

4.2.1. Background and magmatic properties
Thermophysical parameters (specific heat capacity, thermal diffu-

sivity, and thermal conductivity) are important in awide range of volca-
nological problems (e.g. magma convection, cooling of lava flows). The
specific heat capacity (CP [J K−1 kg−1]) is the amount of energy required
to change the temperature of a unit mass of a substance by one Kelvin:

Cp ¼ Q
mlΔT

ð18Þ

whereQ [J] is the amount of heat added,ml [kg] is themass of liquid and
T [K] is the temperature (in Kelvin for the thermophysical parameters,
unlike all previous cases where T was in °C). Specific heat capacity of
mafic to intermediate magmas commonly falls within the range of ~60
to 1500 J K−1 kg−1 (Bachmann and Bergantz, 2006; Bohrson and
Spera, 2001; Di Genova et al., 2014; Dobran, 2012; Robert et al., 2015,
2014; Spera, 2000; Spera and Bohrson, 2001). Giordano and Russell
(2016) present an empirical model for the specific heat capacity of sili-
catemelt and show that it increases linearlywith silica content. Thermal
diffusivityα [m2 s−1] is ameasure of the rate of conductive heat transfer
within a material. A thermal diffusivity of 10−5 m2 s−1 has been re-
ported for a basalt (Huppert and Sparks, 1988; Jellinek and Kerr,
Table 6
Density fitting parameters as a function of concentration (shown in Fig. 7b).

T [°C] H1 [kg m−3] H2 [kg m−3] R2

10 3.1691 999.65 0.9885
20 3.0689 998.17 0.9989
30 3.0066 995.69 0.997
40 2.9820 992.36 0.9989
50 2.9779 988.25 0.9975
60 2.9712 983.42 0.9725
70 2.7976 978.36 0.9786



Fig. 8. The thermophysical parameters: (a) Specific heat capacity Cp; (b) thermal
diffusivity α and (c) thermal conductivity κ for 0.25 wt% to 1.75 wt% HEC solutions at
25 °C. Error bars represent a maximum uncertainty of ±2.6% associated with each
measurement reported by Netzsch instruments, who conducted the sample analysis.
The regression coefficient of the straight line is R2 = 0.995 for (a) and R2 = 0.672 for (b).
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1999), whereas a thermal diffusivity of 10−6 m2 s−1 has been consid-
ered typical for a more silicic melt (Bachmann and Bergantz, 2006).
The compositional dependency of silicate melt thermal diffusivity is
comprehensively reported in Hofmeister et al. (2016). Models for ther-
mal diffusivity as a function of silicatemelt temperature can be found in
Bagdassarov and Dingwell (1994), Romine et al. (2012), Hofmeister
et al. (2016) and Wadsworth et al. (2017), for example. Thermal trans-
port may alternatively be encapsulated in the thermal conductivity κ
[W m−1 K−1], which can be expressed as a combination of parameters
presented previously:

κ ¼ ραCp ð19Þ

This parameter has been previously used to numerically model the
effects of magma injection on the thermal structure of the crust
(Annen and Sparks, 2002). A thermal conductivity of approximately
2–5 W m−1 K−1 is considered typical for a silicate melt (Bachmann
and Bergantz, 2006; Bartlett, 1969; Chapman and Furlong, 1992;
Dobran, 2012).

4.2.2. Method of measurement
The specific heat capacity Cp (Eq. (18)) was measured using a

NETZSCH 204 F1 Phoenix differential scanning calorimeter (DSC) by
NETZSCH instruments. Values reported for all HEC concentrations are
at 25 °C. Additionally, the 1.75 wt% sample is reported at 10, 30, 40
and 50 °C to investigate the temperature dependence of specific heat ca-
pacity. Each test used a ~10 mg aliquot contained within an aluminium
crucible. All tests were conducted in a dynamic nitrogen atmosphere
(20 ml min−1) and heated from−5 °C to 55 °C at a rate of 10 K min−1.

The thermal diffusivity α of each HEC concentration was measured
using a NETZSCH laser flash apparatus (LFA) 467 Hyperflash. During
the laser flash technique, the front of the sample was heated by a
xenon flash lamp and the resultant temperature increase on a parallel
rear plane was measured using an IR-detector. The thermal diffusivity
is then calculated by the following relationship: α = 0.1388x2/t1/2
where x [m] is the sample thickness and t1/2 [s] is the time taken for
the sample to reach half of the temperature maximum. Each sample
was measured five times and averaged before the LFA moved to the
next temperature step. Lastly, the thermal conductivity κwas calculated
via Eq. (19) for each HEC concentration, using measured values of ρ, Cp
and α. The errors for Cp and α are derived from the maximum standard
deviation reported by NETZSCH instruments and then compounded for
the error associated with κ. Pure water values were gathered from the
international steam tables (Grigull et al., 2012) for ρ, Cp and κ and
used to calculateα. These valueswere not used in themodelfits because
they do not represent the exact water used for preparing the HEC solu-
tions, but are included as a guide.

4.2.3. Results and analysis
The three thermophysical properties Cp, κ and α are presented as a

function of HEC concentration (Fig. 8). None of the thermophysical pa-
rameters show a dependence on temperature within the measured
range 10 to 70 °C (Fig. S2 in Supplementary Information). For HEC solu-
tions at 25 °C, Cp decreaseswith increasing concentration. Over the con-
centration range investigated this relationship is linear and can be
described by:

Cp ¼ −I1 Xc þ I2 ð20Þ

where I1= 77.38 J K−1 kg−1 and I2= 4201 J K−1 kg−1. The thermal dif-
fusivity can also be described by a linear correlation (Fig. 8b) and in-
creases with increasing HEC concentration such that:

α ¼ J1Xc þ J2 ð21Þ

where J1 = 1.33 × 10−9 m2 s−1 kg−1 and J2 = 1.42 × 10−7 m2 s−1.
Lastly, the thermal conductivity is found to show no systematic
variation with HEC concentration (Fig. 8c). The mean κ is
0.592 W m−1 K−1 for the concentration range 0.5 to 1.75 wt%. Both
the thermal diffusivity and conductivity of HEC are at least one order
of magnitude lower than magmas. This is desirable for scaling of ana-
logue experiments, in which length scales are typically shorter than in
the natural system.
4.3. Surface tension

4.3.1. Background and magmatic properties
In general, surface tension forces act to reduce surface area, for in-

stance by restoring a bubble ormelt droplet to a spherical shape. Surface
tension is an important parameter that forms a part ofmany dimension-
less groups that are commonly used in experimental scaling, such as the

Morton number Mo ¼ gμ0
4=ρΓ3, which can be thought of as a material

property group that captures the balance of stresses arising from viscos-
ity, inertia, and interfacial tension, and the Eötvös number (or Bond
number) Eo = ρgd2/Γ, where d [m] is the bubble or droplet diameter,
which is the ratio of stresses arising from buoyancy and interfacial ten-
sion. These groups are particularly important when performing ana-
logue experiments on bubble/gas-slug rise and magma degassing



Table 7
Surface tension values for a range of HEC concentrations. Data taken from Dow chemical
hydroxyethyl cellulose data sheet (Dow, 2005).

Xc [wt%] Γ [mN m−1]

1 66.1
0.1 65.4
0.01 65.9
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(e.g., Divoux et al., 2009; Kliakhandler, 2002; Llewellin et al., 2011;
Seyfried and Freundt, 2000). In such experiments, HEC could be used
as a transparent analogue formagma containing small, coupled bubbles,
throughwhich large, decoupled bubbles or slugs are rising, allowing the
behaviour of the large bubbles to be observed directly.

The surface tension of natural silicate melts depends on tempera-
ture, water concentration, and silica content (Bagdassarov et al., 2000;
Gardner, 2012; Walker and Mullins Jr, 1981). Previous experimental
studies have reported surface tension values of: 0.35–0.38Nm−1 for ba-
salts and andesites (Walker andMullins Jr, 1981); 0.1–0.2 Nm−1 for ba-
salts (Khitarov, 1979); 0.052–0.068 N m−1 for Na rich phonolite
(Gardner, 2012); 0.083 to N0.135 N m−1 for rhyolite (Gardner and
Ketcham, 2011) and 0.043–0.062 N m−1 for hydrous dacites (Mangan,
2005).

4.3.2. Method of measurement
The surface tension measurements were conducted by the Dow

Chemical Company on 0.01, 0.1 and 1wt%HEC solutions at 25 °C follow-
ing the ASTMD1331 standard and reproduced here from the Cellosize™
product data booklet (Dow, 2005). The method involves a calibrated
tensiometer with an attached, clean platinum ring positioned above
the sample vessel. The sample is slowly raised until the platinum ring
is submerged, then slowly lowered whilst tension is applied to the
wire to keep the suspended ring in a fixed position. As the ring detaches
from the liquid surface, the dial reading on the tensiometer is recorded.
The dial reading is then converted into a true surface tension by a cor-
rection factor (Harkins and Jordan, 1930).

4.3.3. Results and analysis
Surface tension values reported in Table 7 are slightly lower than for

pure water (~72 mN m−1 at 25 °C; Vargaftik et al., 1983), and do not
show a strong dependence onHEC concentration. Amaximumvariation
of 0.7mNm−1 is observed (roughly 1% of themean value)when chang-
ing an order of magnitude in solution concentration.

5. Discussion

Scaling analogue experiments that use Newtonian fluids is straight-
forward because the flow behaviour is described by a single parameter,
the Newtonian viscosity. For non-Newtonian fluids it is less straightfor-
ward. In this section, we demonstrate how HEC can be scaled as an an-
alogue for bubble suspensions, which have a shear thinning rheology. In
this case, the scaling involves the (Newtonian) melt viscosity, the gas
volume fraction, which controls the magnitude of the viscosity change
due to shear thinning, and the relaxation time, which controls the
strain-rate dependence of viscosity.

5.1. Comparing a shear-thinning polymer to a bubble suspension

The rheology of both bubble suspensions and HEC can be described
using a Cross model (Eqs. (7) and (8) respectively), re-written below
as Eqs. (22) and (23) for the reader's ease:

ηr ¼ ηr∞ þ ηr0−ηr∞
1þ KCað Þm ð22Þ
η ¼ η∞ þ η0−η∞
1þ cγ•

� �p ð23Þ

Themodel for bubble suspensions is in dimensionless form, so, to fa-
cilitate comparison of the two models, we put the model for HEC in di-
mensionless form too. By analogy with the bubble suspension rheology
case (Eqs. (3) and (4)), we non-dimensionalize the low and high strain-
rate asymptotic viscosities by a nominal Newtonian viscosity μn

ηn0 ¼ η0
μn

ð24Þ

ηn∞ ¼ η∞
μn

ð25Þ

where ηn0 and ηn∞ are the dimensionless zero-shear relative viscosity
and dimensionless infinite-shear relative viscosity respectively. We
also define the dimensionless ‘Cross number’ NC, such that Eq. (23) be-
comes:

ηn ¼ ηn∞ þ ηn0−ηn∞
1þ NC

p ð26Þ

where ηn is the dimensionless relative viscosity. Our goal is to identify a
HEC solution that has approximately the same dimensionless rheologi-
cal behaviour as a bubble suspension of interest, such that ηn(NC) ≈ ηr
(KCa). If such an approximation can be found, then there is equivalence
between Eqs. (24) and (3) and Eqs. (25) and (4)

ηn0 ≡ ηr0 ð27Þ

ηn∞ ≡ ηr∞ ð28Þ

and moreover

NC ≡ KCa ð29Þ

p ≡m ð30Þ

where ≡ denotes an equivalence between the parameters. These param-
eters have the same dimensions and if perfectly scaled would be equal.

Inspection of the shapes of the ηn(NC) curves for HEC and ηr(Ca)
curves for bubble suspensions (Fig. 9a gives an example) shows that
HEC always has a gentler slope linking the high and low viscosity as-
ymptotes than a bubble suspension (i.e. p bm), and the low viscosity as-
ymptote is always lower than for a bubble suspension (i.e. ηn∞ b ηr∞).
Consequently, it is not possible to have a perfect rheological analogy be-
tween the two materials, and so the parameters in Eqs. (28) and (30)
cannot be matched exactly. Nonetheless, it is possible to obtain a good
approximate agreement between rheologies over a limited range of Ca
and NC, particularly for Ca b 10 in this example. Note that in Fig. 9a the
viscosity of the HEC solution is normalized so that Eq. (26) is satisfied.
From Eqs. (24) and (27) we have μn = η0/ηr0 hence, from Eq. (3), it fol-
lows that μn = η0/(1− ϕ)−1.

We can improve on the analogy shown in Fig. 9a by restricting our
attention to lower capillary/Cross numbers, and scaling the Cross num-
ber to shift the HEC curve toward the bubble suspension curve (Fig. 9b).
To do this, we define the scaled Cross number as NCs ≡ NC/b, and replace
NC with NCs in Eq. (26).

We then adjust the dimensionless ‘scale factor’ b so that there is a
good fit between ηn(NCs) and ηr(KCa) over the Ca range of interest. So
an improved fit is produced if we put (cf Eq. (29)):

NCs ≡
KCa
b

≡ cγ• ð31Þ



Fig. 9. (a) Dimensionless comparison of the rheologies of a bubble suspensionwith bubble
fraction ϕ = 0.4 and polydispersivity index m = 1.2, and a HEC solution with
concentration Xc = 1 wt% at temperature T = 20 ° C. The viscosity of the HEC is
normalized so that ηn0 = ηr0 (Eq. (26)). (b) Cross number is scaled to improve
agreement between the two curves for Ca b 10 (Eq. (31)).
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It is now possible to arrive at a scaling between the strain-rate in the
HEC, and the effective capillary number of the bubble suspension for
which it is an analogue:

Ca ≡
bc
K

γ• ð32Þ

We term the group bc/K the ‘strain-rate factor’. Similarly, the viscos-
ity of the HEC solution scales to the viscosity of the bubble suspension
via the ‘viscosity ratio’:

μr ≡
μ0

μn
ð33Þ

5.2. Scaling an analogue experiment: an example calculation

For the users ease a spreadsheet with supporting text that simplifies
the scaling for shear thinning rheology is provided in the
Supplementary Information. The spreadsheet details how, by adjusting
the HEC solution concentration and temperature, it is possible to repli-
cate a bubbly magma with a specified gas fraction and melt viscosity,
over a specified Ca range.

Now, as an example, we consider scaling analogue experiments
using HEC to investigate the flow of bubbly basaltic magma along a
dyke of width 1 m. Suppose that the magma has the following proper-
ties: the pure (bubble-free) melt has a viscosity of μ0 = 1000 Pa s; the
gas volume fraction ϕ = 0.4; the Cross model exponent m = 1.2 (i.e.
the suspension is polydisperse); the mean bubble radius a = 1 mm;
and themelt–gas surface tension Γ=0.2Nm−1.Wewish to investigate
the role that shear thinning plays on flow organization, up to Ca = 10.
This requires thatwe can find aHEC solution that scales to the appropri-
ate rheology over the range 0 b Ca ≤ 10, and that falls in the same dy-
namic regime (i.e. Reynolds number is similar).

First, we estimate the Reynolds number of the natural flow. The
maximum capillarity is reached at the dyke wall. To be conservative in
our estimation of Reynolds number, we assume that, when Ca = 10 at
the dyke wall, the bulk of themagma is in the high capillary number re-
gime, and that we can therefore treat the flow as if the magma were
Newtonian (Fig. 1), with apparent viscosity equal to the low viscosity
asymptotic value for the bubbly magma (i.e. η = μ0ηr∞ = 426 Pa s).
We further assume that the velocity profile is parabolic (i.e. we are at
sufficiently low Reynolds number for Poiseuille flow) in which case
the strain-rate at the wall is related to the driving pressure gradient
ΔP/L according to

ΔP
L

¼ 2
γ•

D
ð34Þ

where D is the width of the dyke. The volume flux q per unit length of
dyke is given by

q ¼ D3

12η
ΔP
L

ð35Þ

and the mean velocity of the flow is given by ν = q/D. The Reynolds
number is given by Re= ρDν/η. Evaluating these Equations for the cur-
rent case gives Re=1.3. Our assumption of Poiseuille flow and low Re is
therefore valid and our Cross model-based scaling approach can be
used. Note that the Newtonian and parabolic assumptions are purely
for the purpose of conservative estimation of Reynolds number – in re-
ality, and in our scaled analogue experiments outlined below, the appar-
ent viscosity of the magma varies spatially, and the flow profile is not
parabolic.

Next, we must choose a HEC solution to scale to the magma. Let us
try Xc = 0.8 wt% at 20 °C. We use the Eqs. (13), (14), and (15), along
with the appropriate parameter values, given in Section 3.5.1, to deter-
mine the rheological properties of the solution: η0, c, and p. We deter-
mine μn = η0/(1 − ϕ)−1 hence ηn0 (from Eq. (24)) and fit the
dimensionless Cross model for HEC (Eq. (26)) to the dimensionless
Cross model for the bubbly magma (Eq. (22)). In this case we find a
good fit for scale factor b = 2.6 (maximum mismatch between the di-
mensionless rheological models is b15% for Ca ≤ 10) with viscosity
ratio μr = 290.0, and strain-rate factor bc/K = 2.2.

Wenowcheck that the Reynolds number is appropriately scaled, fol-
lowing the same approach as we did for the bubbly magma, but using
the values appropriate for the scaled analogue fluid and experimental
kit – here we assume that the experimental analogue dyke has width
5 cm. The strain-rate at the wall of the analogue dyke is found from
the strain-rate factor: γ• ¼ Ca=1:5 ¼ 4:6 (since Ca = 10 at the wall).
From this, we can calculate the pressure gradient, flux, velocity, hence
finally the Reynolds number. In this case, Re = 1.3. Comparing this
with the value computed for the bubbly magma (Re = 1.3), we con-
clude that the experiment is well scaled for dynamic regime. This solu-
tion iswell scaled for both the shear thinning rheology, and the dynamic



Fig. 10. Cross model curves for all HEC concentrations at a typical laboratory temperature
of 20 °C. Approximate strain-rate ranges used in previous analogue laboratory
experiments are denoted by the black lines. These previous studies include: lava flow
modelling (Soule and Cashman, 2005); the ascent of gas slugs in a conduit (Llewellin
et al., 2011) and decompression driven vesiculation (Namiki and Manga, 2008, 2005)
Note that these black lines denote shear-rate ranges only, not viscosity.
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regime; hence, it is suitable for use in the proposed analogue experi-
ments, and we expect the spatial gradient in viscosity and the shape
of the velocity profile across the flow to match the natural case. Note
that it is not always possible to scale both rheology and dynamic regime
for a given magma and HEC concentration. For instance, in the current
example a solution of Xc = 1.5 wt% does not scale well for reasonable
experimental temperatures.

5.3. Potential range of application

HEC is shear-thinning over a wide range of strain-rates. This means
that it has potential for use as a shear-thinning analogue in experiments
addressing a range of different flow problems in volcanology. To illus-
trate this,we compare our results to previous analogue studies in the lit-
erature that, together, span a wide range of strain-rates; these include:
(1) lava flow characteristics (Soule and Cashman, 2005); (2) the ascent
of gas slugs in a conduit (Llewellin et al., 2011); and (3) decompression
driven fragmentation and permeable outgassing within a shock tube
(Namiki and Manga, 2008; Namiki and Manga, 2005). For each of
these studies we calculated the typical range of strain-rates encoun-
tered and plotted the ranges on the viscosity–strain-rate curves for all
HEC concentrations at 20 °C (Fig. 10). These ranges are all at higher
shear-rates than the zero-shear viscosity plateau, meaning that the
fluid viscosity will decrease with increasing shear. Therefore, if existing
experimental methods were used with HEC the effect of a non-
Newtonian shear-thinning rheology could be investigated.
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