720 research outputs found
Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current
The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddyâpermitting regional ocean model, we present a suite of simulations forced by the same timeâmean fields, but with different atmospheric and remote ocean variability. These eddyâpermitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies
Visible camera cryostat design and performance for the SuMIRe Prime Focus Spectrograph (PFS)
We describe the design and performance of the SuMIRe Prime Focus Spectrograph
(PFS) visible camera cryostats. SuMIRe PFS is a massively multi-plexed
ground-based spectrograph consisting of four identical spectrograph modules,
each receiving roughly 600 fibers from a 2394 fiber robotic positioner at the
prime focus. Each spectrograph module has three channels covering wavelength
ranges 380~nm -- 640~nm, 640~nm -- 955~nm, and 955~nm -- 1.26~um, with the
dispersed light being imaged in each channel by a f/1.07 vacuum Schmidt camera.
The cameras are very large, having a clear aperture of 300~mm at the entrance
window, and a mass of 280~kg. In this paper we describe the design of the
visible camera cryostats and discuss various aspects of cryostat performance
Marine biogeochemical responses to the North Atlantic Oscillation in a coupled climate model
In this study a coupled ocean-atmosphere model containing interactive marine biogeochemistry is used to analyze interannual, lagged, and decadal marine biogeochemical responses to the North Atlantic Oscillation (NAO), the dominant mode of North Atlantic atmospheric variability. The coupled model adequately reproduces present-day climatologies and NAO atmospheric variability. It is shown that marine biogeochemical responses to the NAO are governed by different mechanisms according to the time scale considered. On interannual time scales, local changes in vertical mixing, caused by modifications in air-sea heat, freshwater, and momentum fluxes, are most relevant in influencing phytoplankton growth through light and nutrient limitation mechanisms. At subpolar latitudes, deeper mixing occurring during positive NAO winters causes a slight decrease in late winter chlorophyll concentration due to light limitation and a 10%â20% increase in spring chlorophyll concentration due to higher nutrient availability. The lagged response of physical and biogeochemical properties to a high NAO winter shows some memory in the following 2 years. In particular, subsurface nutrient anomalies generated by local changes in mixing near the American coast are advected along the North Atlantic Current, where they are suggested to affect downstream chlorophyll concentration with 1 year lag. On decadal time scales, local and remote mechanisms act contemporaneously in shaping the decadal biogeochemical response to the NAO. The slow circulation adjustment, in response to NAO wind stress curl anomalies, causes a basin redistribution of heat, freshwater, and biogeochemical properties which, in turn, modifies the spatial structure of the subpolar chlorophyll bloom
Modification of activated carbons based on diazonium ions in situ produced from aminobenzene organic acid without addition of other acid
Activated carbon products modified with a benzene sulfonic acid group were prepared based on the spontaneous reduction of diazonium salts in situ generated in water without addition of an external acid. The diazotization reaction assisted by the organic acid substituent, produced at once amine, diazonium and triazene functionalities that maximize the grafting yield by a chemical cooperation effect
Variational assimilation of Lagrangian data in oceanography
We consider the assimilation of Lagrangian data into a primitive equations
circulation model of the ocean at basin scale. The Lagrangian data are
positions of floats drifting at fixed depth. We aim at reconstructing the
four-dimensional space-time circulation of the ocean. This problem is solved
using the four-dimensional variational technique and the adjoint method. In
this problem the control vector is chosen as being the initial state of the
dynamical system. The observed variables, namely the positions of the floats,
are expressed as a function of the control vector via a nonlinear observation
operator. This method has been implemented and has the ability to reconstruct
the main patterns of the oceanic circulation. Moreover it is very robust with
respect to increase of time-sampling period of observations. We have run many
twin experiments in order to analyze the sensitivity of our method to the
number of floats, the time-sampling period and the vertical drift level. We
compare also the performances of the Lagrangian method to that of the classical
Eulerian one. Finally we study the impact of errors on observations.Comment: 31 page
Estimation of the risk of Salmonella shedding by finishing pigs using a logistic model obtained from a survey
An analytic epidemiological survey was carried out in 105 French farms to identify factors associated with Salmonella shedding by finishing pigs. This study gave out a list of 7 risk factors using a logistic model. The aim of the present survey was to validate this model on a second sample of batches of pigs in order to estimate their Salmonella status. The validation study was carried out from April 2003 to August 2005 on 64 finishing pig batches distinct from those used originally to generate the logistic model. In each farm, Salmonella shedding of a batch of pigs at the end of the finishing phase was assessed using swabs as described in the analytical study. Questionnaires were filled in with the farmer to collect data related to management routines. Blood samples from10 growing and 10 finishing pigs were taken to assess sanitary risk factors: status vs Lawsonia intracellularis and Porcine Respiratory Coronavirus. Salmonella contamination status of a finishing room before loading, a further identified risk factor, was tested by environmental swabbing procedure. The estimated risk with the standard error, of Salmonella shedding was calculated using the logistic model and compared to the bacteriological Salmonella status of each batch. Several thresholds are proposed and sensitivity, specificity, positive and negative predictive values related to each cut-off value were calculated. A cut-off value of 0.34 maximised both sensitivity (76.9%) and specificity (68.6%) of the model. Whatever the threshold, the accuracy of the Salmonella non-shedding predicted status is better than the Salmonella shedding predicted status. In a bacteriological sampling programme, this model could be a useful tool to identify batches with low risk of Salmonella shedding and to focus attention on those getting a high probability for being positive
Deciphering the infectious process of Colletotrichum lupini in lupin through transcriptomic and proteomic analysis
The fungal phytopathogen Colletotrichum lupini is responsible for lupin anthracnose, resulting in significant yield losses worldwide. The molecular mechanisms underlying this infectious process are yet to be elucidated. This study proposes to evaluate C. lupini gene expression and protein synthesis during lupin infection, using, respectively, an RNAseq-based transcriptomic approach and a mass spectrometry-based proteomic approach. Patterns of differentially-expressed genes in planta were evaluated from 24 to 84 hours post-inoculation, and compared to in vitro cultures. A total of 897 differentially-expressed genes were identified from C. lupini during interaction with white lupin, of which 520 genes were predicted to have a putative function, including carbohydrate active enzyme, effector, protease or transporter-encoding genes, commonly described as pathogenicity factors for other Colletotrichum species during plant infection, and 377 hypothetical proteins. Simultaneously, a total of 304 proteins produced during the interaction were identified and quantified by mass spectrometry. Taken together, the results highlight that the dynamics of symptoms, gene expression and protein synthesis shared similarities to those of hemibiotrophic pathogens. In addition, a few genes with unknown or poorly-described functions were found to be specifically associated with the early or late stages of infection, suggesting that they may be of importance for pathogenicity. This study, conducted for the first time on a species belonging to the Colletotrichum acutatum species complex, presents an opportunity to deepen functional analyses of the genes involved in the pathogenicity of Colletotrichum spp. during the onset of plant infection
- âŠ