17 research outputs found

    Searches for rare B-s(0) and B-0 decays into four muons

    Get PDF
    Searches for rare Bs0B_s^0 and B0B^0 decays into four muons are performed using proton-proton collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1\text{fb}^{-1}. Direct decays and decays via light scalar and J/ψJ/\psi resonances are considered. No evidence for the six decays searched for is found and upper limits at the 95% confidence level on their branching fractions ranging between 1.8×10−101.8\times10^{-10} and 2.6×10−92.6\times10^{-9} are set

    Search for the doubly charmed baryon Ξ cc + in the Ξ c + π − π + final state

    Get PDF
    Abstract: A search for the doubly charmed baryon Ξcc+ is performed in the Ξc+π−π+ invariant-mass spectrum, where the Ξc+ baryon is reconstructed in the pK−π+ final state. The study uses proton-proton collision data collected with the LHCb detector at a centre- of-mass energy of 13 TeV, corresponding to a total integrated luminosity of 5.4 fb−1. No significant signal is observed in the invariant-mass range of 3.4–3.8 GeV/c2. Upper limits are set on the ratio of branching fractions multiplied by the production cross-section with respect to the Ξcc++→ (Ξc+→ pK−π+)π+ decay for different Ξcc+ mass and lifetime hypotheses in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 2.5 to 25 GeV/c. The results from this search are combined with a previously published search for the Ξcc+→Λc+K−π+ decay mode, yielding a maximum local significance of 4.0 standard deviations around the mass of 3620 MeV/c2, including systematic uncertainties. Taking into account the look-elsewhere effect in the 3.5–3.7 GeV/c2 mass window, the combined global significance is 2.9 standard deviations including systematic uncertainties

    Silver iodide sodalite for 129I immobilisation

    No full text
    Silver iodide sodalite was initially synthesised as a fine-grained major phase in a nominally stoichiometric composition following hot isostatic pressing at 850 °C with 100 MPa and its composition, Ag4Al3Si3O12I, was approximately verified by scanning electron microscopy. An alternative preparative method yielded a more dense and stoichiometric AgI sodalite on sintering and HIPing. As found for AgI, the I is released from AgI sodalite much more readily in reducing water than in ordinary water. Thus in normal PCT-B tests, the I release was <0.3 g/L in water, but it was ∼70 g/L under highly reducing conditions. This is an important point with regard to can material if HIPing is used for consolidation. © 2016 Elsevier B.V

    Flexible process options for the immobilisation of residues and wastes containing plutonium.

    No full text
    Residues and waste streams containing plutonium present unique technical, safety, regulatory, security, and sociopolitical challenges. In the UK these streams range from lightly plutonium contaminated materials (PCM) through to residues resulting directly from Pu processing operations. In addition there are potentially stocks of Pu oxide powders whose future designation may be either a waste or an asset, due to their levels of contamination making their reuse uneconomic, or to changes in nuclear policy. While waste management routes exist for PCM, an immobilisation process is required for streams containing higher levels of Pu. Such a process is being developed by Nexia Solutions and ANSTO to treat and immobilise Pu waste and residues currently stored on the Sellafield site. The characteristics of these Pu waste streams are highly variable. The physical form of the Pu waste ranges from liquids, sludges, powders/granules, to solid components (e.g., test fuels), with the Pu present as an ion in solution, as a salt, metal, oxide or other compound. The chemistry of the Pu waste streams also varies considerably with a variety of impurities present in many waste streams. Furthermore, with fissile isotopes present, criticality is an issue during operations and in the store or repository. Safeguards and security concerns must be assessed and controlled. The process under development, by using a combination of tailored waste form chemistry combined with flexible process technology aims to develop a process line to handle a broad range of Pu waste streams. It aims to be capable of dealing with not only current arisings but those anticipated to arise as a result of future operations or policy changes
    corecore