6,457 research outputs found

    Multi-level study of C3H2: The first interstellar hydrocarbon ring

    Get PDF
    Cyclic species in the interstellar medium have been searched for almost since the first detection of interstellar polyatomic molecules. Eleven different C3H2 rotational transitions were detected; 9 of which were studied in TMC-1, a nearby dark dust cloud, are shown. The 1 sub 10 yields 1 sub 01 and 2 sub 20 yields 2 sub 11 transitions were observed with the 43 m NRAO telescope, while the remaining transitions were detected with the 14 m antenna of the Five College Radio Observatory (FCRAO). The lines detected in TMC-1 have energies above the ground state ranging from 0.9 to 17.1 K and consist of both ortho and para species. Limited maps were made along the ridge for several of the transitions. The HC3N J = 2 yields 1 transition were mapped simultaneously with the C3H2 1 sub 10 yields 1 sub 01 line and therefore can compare the distribution of this ring with a carbon chain in TMC-1. C3H2 is distributed along a narrow ridge with a SE - NW extension which is slightly more extended than the HC2N J = 2 yields 1. Gaussian fits gives a FWHP extension of 8'5 for C3H2 while HC3N has a FWHP of 7'. The data show variations of the two velocity components along the ridge as a function of transition. Most of the transitions show a peak at the position of strongest HC3N emission while the 2 sub 21 yields 2 sub 10 transition shows a peak at the NH3 position

    Dissecting the spiral galaxy M83: mid-infrared emission and comparison with other tracers of star formation

    Full text link
    We present a detailed mid-infrared study of the nearby, face-on spiral galaxy M83 based on ISOCAM data. M83 is a unique case study, since a wide variety of MIR broad-band filters as well as spectra, covering the wavelength range of 4 to 18\mu m, were observed and are presented here. Emission maxima trace the nuclear and bulge area, star-formation regions at the end of the bar, as well as the inner spiral arms. The fainter outer spiral arms and interarm regions are also evident in the MIR map. Spectral imaging of the central 3'x3' (4 kpc x 4 kpc) field allows us to investigate five regions of different environments. The various MIR components (very small grains, polycyclic aromatic hydrocarbon (PAH) molecules, ionic lines) are analyzed for different regions throughout the galaxy. In the total 4\mu m to 18\mu m wavelength range, the PAHs dominate the luminosity, contributing between 60% in the nuclear and bulge regions and 90% in the less active, interarm regions. Throughout the galaxy, the underlying continuum emission from the small grains is always a smaller contribution in the total MIR wavelength regime, peaking in the nuclear and bulge components. The implications of using broad-band filters only to characterize the mid-infrared emission of galaxies, a commonly used ISOCAM observation mode, are discussed. We present the first quantitative analysis of new H-alpha and 6cm VLA+Effelsberg radio continuum maps of M83. The distribution of the MIR emission is compared with that of the CO, HI, R band, H-alpha and 6cm radio. A striking correlation is found between the intensities in the two mid-infrared filter bands and the 6cm radio continuum. To explain the tight mid-infrared-radio correlation we propose the anchoring of magnetic field lines in the photoionized shells of gas clouds.Comment: 22 pages, 15 figures. Accepted for publication in A&

    The bolometric and UV attenuation in normal spiral galaxies of the Herschel Reference Survey

    Get PDF
    The dust in nearby galaxies absorbs a fraction of the UV-optical-near-infrared radiation produced by stars. This energy is consequently re-emitted in the infrared. We investigate the portion of the stellar radiation absorbed by spiral galaxies from the HRS by modelling their UV-to-submillimetre spectral energy distributions. Our models provide an attenuated and intrinsic SED from which we find that on average 32 % of all starlight is absorbed by dust. We define the UV heating fraction as the percentage of dust luminosity that comes from absorbed UV photons and find that this is 56 %, on average. This percentage varies with morphological type, with later types having significantly higher UV heating fractions. We find a strong correlation between the UV heating fraction and specific star formation rate and provide a power-law fit. Our models allow us to revisit the IRX-AFUV relations, and derive these quantities directly within a self-consistent framework. We calibrate this relation for different bins of NUV-r colour and provide simple relations to relate these parameters. We investigated the robustness of our method and we conclude that the derived parameters are reliable within the uncertainties which are inherent to the adopted SED model. This calls for a deeper investigation on how well extinction and attenuation can be determined through panchromatic SED modelling.Comment: 14 pages, 7 figures. Accepted for publication in Astronomy & Astrophysic

    Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust

    Get PDF
    We present 12^{12}CO(1-0) and 12^{12}CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies and marginally detected in another one. CO fluxes correlate with the FIR 250 μ\mum emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses <~ 109^9 M_{\odot}, contrary to the atomic hydrogen fraction, MHI_{HI}/M_*, which increases inversely with M_*. The flattening of the MH2_{H_2}/M_* ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both HI-deficient and HI-normal dwarfs. The molecular-to-atomic ratio is more tightly correlated with stellar surface density than metallicity, confirming that the interstellar gas pressure plays a key role in determining the balance between the two gaseous components of the interstellar medium. Virgo dwarfs follow the same linear trend between molecular gas mass and star formation rate as more massive spirals, but gas depletion timescales, τdep\tau_{dep}, are not constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo cluster environment is removing the atomic gas and dust components of the dwarfs, but the molecular gas appears to be less affected at the current stage of evolution within the cluster. However, the correlation between HI deficiency and the molecular gas depletion time suggests that the lack of gas replenishment from the outer regions of the disc is lowering the star formation activity.Comment: 19 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Mid-infrared observations of the ultraluminous galaxies IRAS14348-1447, IRAS19254-7245, and IRAS23128-5919

    Full text link
    We present a study of the three ultraluminous infrared galaxies IRAS14348-1447, IRAS19254-7245, and IRAS23128-5919, based on mid-infrared (MIR) spectro-imaging (5-18microns) observations performed with ISOCAM. We find that the MIR emission from each system, which consists of a pair of interacting late type galaxies, is principally confined to the nuclear regions with diameters of 1-2kpc and can account for more than 95% of their IRAS 12micron flux. In each interacting system, the galaxy hosting an active galactic nucleus (AGN) dominates the total spectrum and shows stronger dust continuum (12-16microns) relative to the Unidentified Infrared Band (UIB) emission (6-9microns), suggestive of its enhanced radiation field. The MIR dominant galaxy also exhibits elevated 15micron/Halpha and 15micron/K ratios which trace the high extinction due to the large quantities of molecular gas and dust present in its central regions. Using only diagnostics based on our mid-infrared spectra, we can establish that the Seyfert galaxy IRAS19254-7245 exhibits MIR spectral features of an AGN while the MIR spectrum of the Seyfert (or LINER) member of IRAS23128-5919 is characteristic of dust emission principally heated by star forming regions.Comment: Accepted for publication in Astronomy & Astrophysics, 13 pages, 9 figure

    The Mass Function of Super Giant Molecular Complexes and Implications for Forming Young Massive Star Clusters in the Antennae (NGC 4038/39)

    Full text link
    We have used previously published observations of the CO emission from the Antennae (NGC 4038/39) to study the detailed properties of the super giant molecular complexes with the goal of understanding the formation of young massive star clusters. Over a mass range from 5E6 to 9E8 solar masses, the molecular complexes follow a power-law mass function with a slope of -1.4 +/- 0.1, which is very similar to the slope seen at lower masses in molecular clouds and cloud cores in the Galaxy. Compared to the spiral galaxy M51, which has a similar surface density and total mass of molecular gas, the Antennae contain clouds that are an order of magnitude more massive. Many of the youngest star clusters lie in the gas-rich overlap region, where extinctions as high as Av~100 imply that the clusters must lie in front of the gas. Combining data on the young clusters, thermal and nonthermal radio sources, and the molecular gas suggests that young massive clusters could have formed at a constant rate in the Antennae over the last 160 Myr and that sufficient gas exists to sustain this cluster formation rate well into the future. However, this conclusion requires that a very high fraction of the massive clusters that form initially in the Antennae do not survive as long as 100 Myr. Finally, we compare our data with two models for massive star cluster formation and conclude that the model where young massive star clusters form from dense cores within the observed super giant molecular complexes is most consistent with our current understanding of this merging system. (abbreviated)Comment: 40 pages, four figures; accepted for publication in Ap
    corecore