The dust in nearby galaxies absorbs a fraction of the
UV-optical-near-infrared radiation produced by stars. This energy is
consequently re-emitted in the infrared. We investigate the portion of the
stellar radiation absorbed by spiral galaxies from the HRS by modelling their
UV-to-submillimetre spectral energy distributions. Our models provide an
attenuated and intrinsic SED from which we find that on average 32 % of all
starlight is absorbed by dust. We define the UV heating fraction as the
percentage of dust luminosity that comes from absorbed UV photons and find that
this is 56 %, on average. This percentage varies with morphological type, with
later types having significantly higher UV heating fractions. We find a strong
correlation between the UV heating fraction and specific star formation rate
and provide a power-law fit. Our models allow us to revisit the IRX-AFUV
relations, and derive these quantities directly within a self-consistent
framework. We calibrate this relation for different bins of NUV-r colour and
provide simple relations to relate these parameters. We investigated the
robustness of our method and we conclude that the derived parameters are
reliable within the uncertainties which are inherent to the adopted SED model.
This calls for a deeper investigation on how well extinction and attenuation
can be determined through panchromatic SED modelling.Comment: 14 pages, 7 figures. Accepted for publication in Astronomy &
Astrophysic