159 research outputs found

    Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    Full text link
    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω0.5Ωe\omega \simeq 0.5\Omega_e, where Ωe\Omega_e is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe0.3\Omega_e and 0.6Ωe0.6\Omega_e. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test-particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles

    Frequencies of wave packets of whistler-mode chorus inside its source region: a case study

    Get PDF
    Whistler-mode chorus is a structured wave emission observed in the Earth's magnetosphere in a frequency range from a few hundreds of Hz to several kHz. We investigate wave packets of chorus using high-resolution measurements recorded by the WBD instrument on board the four Cluster spacecraft. A night-side chorus event observed during geomagnetically disturbed conditions is analyzed. We identify lower and upper frequencies for a large number of individual chorus wave packets inside the chorus source region. We investigate how these observations are related to the central position of the chorus source which has been previously estimated from the Poynting flux measurements. We observe typical frequency bandwidths of chorus of approximately 10% of the local electron cyclotron frequency. Observed time scales are around 0.1 s for the individual wave packets. Our results indicate a lower occurrence probability for lower frequencies in the vicinity of the central position of the source compared to measurements recorded closer to the outer boundaries of the source. This is in agreement with recent research based on the backward wave oscillator theory

    A case study of electron precipitation fluxes due to plasmaspheric hiss

    Get PDF
    We find that during a large geomagnetic storm in October 2011 the trapped fluxes of >30, >100, and >300 keV outer radiation belt electrons were enhanced at L=3-4 during the storm main phase. A gradual decay of the trapped fluxes was observed over the following 5–7 days, even though no significant precipitation fluxes could be observed in the Polar Orbiting Environmental Satellite (POES) electron precipitation detectors. We use the Antarctic-Arctic Radiation-belt (Dynamic) Deposition - VLF Atmospheric Research Konsortium (AARDDVARK) receiver network to investigate the characteristics of the electron precipitation throughout the storm period. Weak electron precipitation was observed on the dayside for 5–7 days, consistent with being driven by plasmaspheric hiss. Using a previously published plasmaspheric hiss-induced electron energy e-folding spectrum of E0=365 keV, the observed radiowave perturbation levels at L=3-4 were found to be caused by >30 keV electron precipitation with flux ~100 el. cm−2 s−1 sr−1. The low levels of precipitation explain the lack of response of the POES telescopes to the flux, because of the effect of the POES lower sensitivity limit and ability to measure weak diffusion-driven precipitation. The detection of dayside, inner plasmasphere electron precipitation during the recovery phase of the storm is consistent with plasmaspheric hiss wave-particle interactions, and shows that the waves can be a significant influence on the evolution of the outer radiation belt trapped flux that resides inside the plasmapause

    Spatiotemporal analysis of the runaway distribution function from synchrotron images in an ASDEX Upgrade disruption

    Get PDF
    Synchrotron radiation images from runaway electrons (REs) in an ASDEX Upgrade discharge disrupted by argon injection are analysed using the synchrotron diagnostic tool Soft and coupled fluid-kinetic simulations. We show that the evolution of the runaway distribution is well described by an initial hot-tail seed population, which is accelerated to energies between 25-50 MeV during the current quench, together with an avalanche runaway tail which has an exponentially decreasing energy spectrum. We find that, although the avalanche component carries the vast majority of the current, it is the high-energy seed remnant that dominates synchrotron emission. With insights from the fluid-kinetic simulations, an analytic model for the evolution of the runaway seed component is developed and used to reconstruct the radial density profile of the RE beam. The analysis shows that the observed change of the synchrotron pattern from circular to crescent shape is caused by a rapid redistribution of the radial profile of the runaway density

    A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability

    Get PDF
    Relativistic electron (RE) beams at high current density (low safety factor, q ( a )) yet very low free-electron density accessed with D-2 secondary injection in the DIII-D and JET tokamak are found to exhibit large-scale MHD instabilities that benignly terminate the RE beam. In JET, this technique has enabled termination of MA-level RE currents without measurable first-wall heating. This scenario thus offers an unexpected alternate pathway to achieve RE mitigation without collisional dissipation. Benign termination is explained by two synergistic effects. First, during the MHD-driven RE loss events both experiment and MHD orbit-loss modeling supports a significant increase in the wetted area of the RE loss. Second, as previously identified at JET and DIII-D, the fast kink loss timescale precludes RE beam regeneration and the resulting dangerous conversion of magnetic to RE kinetic energy. During the termination, the RE kinetic energy is lost to the wall, but the current fully transfers to the cold bulk thus enabling benign Ohmic dissipation of the magnetic energy on longer timescales via a conventional current quench. Hydrogenic (D-2) secondary injection is found to be the only injected species that enables access to the benign termination. D-2 injection: (1) facilitates access to low q ( a ) in existing devices (via reduced collisionality & resistivity), (2) minimizes the RE avalanche by 'purging' the high-Z atoms from the RE beam, (3) drives recombination of the background plasma, reducing the density and Alfven time, thus accelerating the MHD growth. This phenomenon is found to be accessible when crossing the low q ( a ) stability boundary with rising current, falling toroidal field, or contracting minor radius-the latter being the expected scenario for vertically unstable RE beams in ITER. While unexpected, this path scales favorably to fusion-grade tokamaks and offers a novel RE mitigation scenario in principle accessible with the day-one disruption mitigation system of ITER

    Overview of the TCV tokamak experimental programme

    Get PDF
    The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with \u27small\u27 (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations

    The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling

    Get PDF
    We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme
    corecore