20 research outputs found

    Sediment accumulation rates in subarctic lakes: Insights into age-depth modeling from 22 dated lake records from the Northwest Territories, Canada

    Get PDF
    Age-depth modeling using Bayesian statistics requires well-informed prior information about the behavior of sediment accumulation. Here we present average sediment accumulation rates (represented as deposition times, DT, in yr/cm) for lakes in an Arctic setting, and we examine the variability across space (intra- and inter-lake) and time (late Holocene). The dataset includes over 100 radiocarbon dates, primarily on bulk sediment, from 22 sediment cores obtained from 18 lakes spanning the boreal to tundra ecotone gradients in subarctic Canada. There are four to twenty-five radiocarbon dates per core, depending on the length and character of the sediment records. Deposition times were calculated at 100-year intervals from age-depth models constructed using the 'classical' age-depth modeling software Clam. Lakes in boreal settings have the most rapid accumulation (mean DT 20±10 yr/cm), whereas lakes in tundra settings accumulate at moderate (mean DT 70±10 yr/cm) to very slow rates, (>100yr/cm). Many of the age-depth models demonstrate fluctuations in accumulation that coincide with lake evolution and post-glacial climate change. Ten of our sediment cores yielded sediments as old as c. 9000cal BP (BP=years before AD 1950). From between c. 9000cal BP and c. 6000cal BP, sediment accumulation was relatively rapid (DT of 20-60yr/cm). Accumulation slowed between c. 5500 and c. 4000cal BP as vegetation expanded northward in response to warming. A short period of rapid accumulation occurred near 1200cal BP at three lakes. Our research will help inform priors in Bayesian age modeling

    Freshwater Testate Amoebae (Arcellinida) Response to Eutrophication as Revealed by Test Size and Shape Indices

    Get PDF
    We review the potential for applying traits-based approaches to freshwater testate amoeba, a diverse protist group that are abundant in lakes and are valuable ecological indicators. We investigated the efficacy of geometric morphometric analysis to define Arcellinida test size and shape indices that could summarize freshwater testate amoeba community dynamics along a temporal gradient of eutrophication in Loch Leven, Scotland (United Kingdom). A cluster analysis of test size and shape indices yielded three clusters, each dominated by a single shape: elongate, spherical and ovoid. When plotted stratigraphically, we observed increases in spherical tests, decreases in elongate tests and shrinking of test size coeval with eutrophication in Loch Leven. Decreases in the elongate cluster may reflect benthic conditions with reduced oxygen levels, while increases in the spherical cluster are likely associated with an expanding macrophyte community that promoted pelagic and epibiotic life habits. Shrinking of test size may be a stress response to eutrophication and/or warming temperatures. Tracking community dynamics using test size and shape indices was found to be as effective as using species-based approaches to summarize key palaeolimnological changes, with the added benefits of being free from taxonomic bias and error. The approach thus shows significant potential for future studies of aquatic community change in nutrient impacted lakes

    Reconstruction of Holocene hydroclimatic variability in subarctic treeline lakes using lake sediment grain-size end-members

    No full text
    Current climate trends are expected to result in the northward expansion of the subarctic treeline leading to changes in vegetation cover and permafrost distribution, as they did during the Holocene Climate Optimum when the treeline was 150 km north of its current position. The impacts of these changes on the region’s hydrology are still poorly understood. The grain-size distributions of treeline lake sediments provide an important proxy related to spring melt conditions that can be used to reconstruct hydroclimatic variability. End-member mixing analysis was used to model depositional end-members in 55 modern lake sediment samples and two sediment cores spanning the mid- to late Holocene collected from above and below the treeline in the central Northwest Territories, Canada. Cold climatic intervals (e.g. ‘Dark Ages Cold Period’, ‘Little Ice Age’) were characterised by an increase in the very coarse silt and the fine sand end-members. This was interpreted to be a response to degradation of vegetation cover and/or permafrost development. We observed increases in fine and coarse silt end-members during warmer climatic intervals (e.g. Medieval Climate Anomaly) and over the past c. 300 yr BP. This pattern is probably the result of extended melt seasons, with greater losses to evaporation and increased infiltration. The most pronounced palaeo-hydroclimatological change over the past c. 8000 yr BP was the abrupt increase in a very coarse silt end-member (mode = 50–200 µm) at c. 6300 yr BP. We interpreted the sedimentological change as an increase in winter precipitation and more energetic spring melt conditions, leading to the spring melt becoming the dominant lacustrine sediment delivery mechanism. These results place modern hydrological changes in a millennial context and show that analysis of temporal changes in the hydroclimatological system can provide insight into the future states of these sensitive subarctic ecosystems

    Sequential sample reservoirs for Itrax-XRF analysis of discrete samples

    No full text
    Geochemical analysis of sediment samples can be used to characterize between- and within-lake variability and provide insights into lake chemistry, depositional processes and contamination sources. The number of samples for geochemical studies is restricted by cost, sample volume required, and the destructive nature of inductively coupled plasma mass spectrometry, instrumental neutron activation analysis, or wavelength dispersive x-ray fluorescence. Core scanners that incorporate energy dispersive x-ray fluorescence spectrometry, such as the Cox Itrax-XRF core scanner, have high through-put and can be used to produce high-quality geochemical datasets at low cost without destroying sample material. Here we describe a new analysis vessel that enables rapid, non-destructive Itrax-XRF analysis of discrete sediment samples

    Diatom species shown in the stratigraphic diagram of the Danny’s Lake sediment core.

    No full text
    <p>Taxonomy was updated to reflect present-day naming conventions [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0199872#pone.0199872.ref036" target="_blank">36</a>].</p

    Sedimentary records of coastal storm surges: Evidence of the 1953 North Sea event

    Get PDF
    The expression of storm events in the geological record is poorly understood; therefore, stratigraphic investigations of known events are needed. The 1953 North Sea storm surge was the largest natural disaster for countries bordering the southern North Sea during the twentieth century. We characterize the spatial distribution of a sand deposit from the 1953 storm surge in a salt marsh at Holkham, Norfolk (UK). Radionuclide measurements, core scanning X-ray fluorescence (Itrax), and particle size analyses, were used to date and characterise the deposit. The deposit occurs at the onset of detectable 137Cs - coeval with the first testing of nuclear weapons in the early 1950s. The sand layer is derived from material eroded from beach and dunes on the seaward side of the salt marsh. After the depositional event, accumulation of finer-grained silt and clay materials resumed. This work has important implications for understanding the responses of salt marshes to powerful storms and provides a near-modern analogue of storm surge events for calibration of extreme wave events in the geological record
    corecore