817 research outputs found
Further development of an in vitro model for studying the penetration of chemicals through compromised skin
A new in vitro model based on the electrical resistance properties of the skin barrier has been established in this laboratory. The model utilises a tape stripping procedure in dermatomed pig skin that removes a specific proportion of the stratum corneum, mimicking impaired barrier function observed in humans with damaged skin. The skin penetration and distribution of chemicals with differing physicochemical properties, namely; Benzoic acid, 3-Aminophenol, Caffeine and Sucrose has been assessed in this model. Although, skin penetration over 24 h differed for each chemical, compromising the skin did not alter the shape of the time course profile, although absorption into receptor fluid was higher for each chemical. Systemic exposure (receptor fluid, epidermis and dermis), was marginally higher in compromised skin following exposure to the fast penetrant, Benzoic acid, and the slow penetrant Sucrose. The systemically available dose of 3-Aminophenol increased to a greater extent and the absorption of Caffeine was more than double in compromised skin, suggesting that Molecular Weight and Log Pow, are not the only determinants for assessing systemic exposure under these conditions. Although further investigations are required, this in vitro model may be useful for prediction of dermal route exposure under conditions where skin barrier is impaired
Recommended from our members
The influence of tree species on canopy soil nutrient status in a tropical lowland wet forest in Costa Rica
The canopy is host to a large percentage of the flora and fauna in tropical wet forests and is distinct from the forest floor in plant richness, soil type and microclimate. In this study, we examined the influence of tree species and season on soil nutrient cycling processes in canopy soils of four tree species common to Costa Rican wet forests. We also compared the canopy soils to the associated forest floor mineral soils. Both tree species and season had strong effects on canopy soil nutrients and processes. Canopy soils from trees with high litter lignin concentrations had higher net N-mineralization rates and higher dissolved inorganic N concentrations than those with low lignin concentrations. During the dry season, net N-immobilization occurred and dissolved organic and inorganic N and available P concentrations were significantly higher than during the wet season. Overall, canopy soils had higher N levels and higher fungi + bacteria richness than forest floor mineral soils. The differences in canopy soil properties observed among tree species indicates that these species have distinct N cycles that reflect differences in both soil origin and biological controls. © 2008 Springer Science+Business Media B.V
The Dawn of Open Access to Phylogenetic Data
The scientific enterprise depends critically on the preservation of and open
access to published data. This basic tenet applies acutely to phylogenies
(estimates of evolutionary relationships among species). Increasingly,
phylogenies are estimated from increasingly large, genome-scale datasets using
increasingly complex statistical methods that require increasing levels of
expertise and computational investment. Moreover, the resulting phylogenetic
data provide an explicit historical perspective that critically informs
research in a vast and growing number of scientific disciplines. One such use
is the study of changes in rates of lineage diversification (speciation -
extinction) through time. As part of a meta-analysis in this area, we sought to
collect phylogenetic data (comprising nucleotide sequence alignment and tree
files) from 217 studies published in 46 journals over a 13-year period. We
document our attempts to procure those data (from online archives and by direct
request to corresponding authors), and report results of analyses (using
Bayesian logistic regression) to assess the impact of various factors on the
success of our efforts. Overall, complete phylogenetic data for ~60% of these
studies are effectively lost to science. Our study indicates that phylogenetic
data are more likely to be deposited in online archives and/or shared upon
request when: (1) the publishing journal has a strong data-sharing policy; (2)
the publishing journal has a higher impact factor, and; (3) the data are
requested from faculty rather than students. Although the situation appears
dire, our analyses suggest that it is far from hopeless: recent initiatives by
the scientific community -- including policy changes by journals and funding
agencies -- are improving the state of affairs
Causes of Death Following PCI Versus CABG in Complex CAD 5-Year Follow-Up of SYNTAX
AbstractBackgroundThere are no data available on specific causes of death from randomized trials that have compared coronary artery bypass grafting (CABG) with percutaneous coronary intervention (PCI).ObjectivesThe purpose of this study was to investigate specific causes of death, and its predictors, after revascularization for complex coronary disease in patients.MethodsAn independent Clinical Events Committee consisting of expert physicians who were blinded to the study treatment subclassified causes of death as cardiovascular (cardiac and vascular), noncardiovascular, or undetermined according to the trial protocol. Cardiac deaths were classified as sudden cardiac, related to myocardial infarction (MI), and other cardiac deaths.ResultsIn the randomized cohort, there were 97 deaths after CABG and 123 deaths after PCI during a 5-year follow-up. After CABG, 49.4% of deaths were cardiovascular, with the greatest cause being heart failure, arrhythmia, or other causes (24.6%), whereas after PCI, the majority of deaths were cardiovascular (67.5%) and as a result of MI (29.3%). The cumulative incidence rates of all-cause death were not significantly different between CABG and PCI (11.4% vs. 13.9%, respectively; p = 0.10), whereas there were significant differences in terms of cardiovascular (5.8% vs. 9.6%, respectively; p = 0.008) and cardiac death (5.3% vs. 9.0%, respectively; p = 0.003), which were caused primarily by a reduction in MI-related death with CABG compared with PCI (0.4% vs. 4.1%, respectively; p <0.0001). Treatment with PCI versus CABG was an independent predictor of cardiac death (hazard ratio: 1.55; 95% confidence interval: 1.09 to 2.33; p = 0.045). The difference in MI-related death was seen largely in patients with diabetes, 3-vessel disease, or high SYNTAX (TAXUS Drug-Eluting Stent Versus Coronary Artery Bypass Surgery for the Treatment of Narrowed Arteries) trial scores.ConclusionsDuring a 5-year follow-up, CABG in comparison with PCI was associated with a significantly reduced rate of MI-related death, which was the leading cause of death after PCI. Treatments following PCI should target reducing post-revascularization spontaneous MI. Furthermore, secondary preventive medication remains essential in reducing events post-revascularization. (TAXUS Drug-Eluting Stent Versus Coronary Artery Bypass Surgery for the Treatment of Narrowed Arteries [SYNTAX]; NCT00114972
Two-dimensional models as testing ground for principles and concepts of local quantum physics
In the past two-dimensional models of QFT have served as theoretical
laboratories for testing new concepts under mathematically controllable
condition. In more recent times low-dimensional models (e.g. chiral models,
factorizing models) often have been treated by special recipes in a way which
sometimes led to a loss of unity of QFT. In the present work I try to
counteract this apartheid tendency by reviewing past results within the setting
of the general principles of QFT. To this I add two new ideas: (1) a modular
interpretation of the chiral model Diff(S)-covariance with a close connection
to the recently formulated local covariance principle for QFT in curved
spacetime and (2) a derivation of the chiral model temperature duality from a
suitable operator formulation of the angular Wick rotation (in analogy to the
Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational
chiral theories. The SL(2,Z) modular Verlinde relation is a special case of
this thermal duality and (within the family of rational models) the matrix S
appearing in the thermal duality relation becomes identified with the
statistics character matrix S. The relevant angular Euclideanization'' is done
in the setting of the Tomita-Takesaki modular formalism of operator algebras.
I find it appropriate to dedicate this work to the memory of J. A. Swieca
with whom I shared the interest in two-dimensional models as a testing ground
for QFT for more than one decade.
This is a significantly extended version of an ``Encyclopedia of Mathematical
Physics'' contribution hep-th/0502125.Comment: 55 pages, removal of some typos in section
Staphylococcus epidermidis glucose uptake in biofilm versus planktonic cells
The aim of this work was to compare the glucose
uptake of biofilms formed by four different Staphylococcus
epidermidis strains as well as to compare between
sessile and planktonic cells of the same strain. Biofilm cells
showed a lower level of glucose uptake compared to
planktonic cells. Moreover, glucose uptake by cells in the
sessile form was strongly influenced by biofilm composition.
Therefore, this work helps to confirm the phenotypic
variability of S. epidermidis strains and the different
behaviour patterns between sessile and free cells.Fundação para a Ciência e a Tecnologia (FCT) - POCTI/ESP/42688/2001;
SFRH/BD/19265/2004
Invasion speeds for structured populations in fluctuating environments
We live in a time where climate models predict future increases in
environmental variability and biological invasions are becoming increasingly
frequent. A key to developing effective responses to biological invasions in
increasingly variable environments will be estimates of their rates of spatial
spread and the associated uncertainty of these estimates. Using stochastic,
stage-structured, integro-difference equation models, we show analytically that
invasion speeds are asymptotically normally distributed with a variance that
decreases in time. We apply our methods to a simple juvenile-adult model with
stochastic variation in reproduction and an illustrative example with published
data for the perennial herb, \emph{Calathea ovandensis}. These examples
buttressed by additional analysis reveal that increased variability in vital
rates simultaneously slow down invasions yet generate greater uncertainty about
rates of spatial spread. Moreover, while temporal autocorrelations in vital
rates inflate variability in invasion speeds, the effect of these
autocorrelations on the average invasion speed can be positive or negative
depending on life history traits and how well vital rates ``remember'' the
past
Superconformal Flavor Simplified
A simple explanation of the flavor hierarchies can arise if matter fields
interact with a conformal sector and different generations have different
anomalous dimensions under the CFT. However, in the original study by Nelson
and Strassler many supersymmetric models of this type were considered to be
'incalculable' because the R-charges were not sufficiently constrained by the
superpotential. We point out that nearly all such models are calculable with
the use of a-maximization. Utilizing this, we construct the simplest
vector-like flavor models and discuss their viability. A significant constraint
on these models comes from requiring that the visible gauge couplings remain
perturbative throughout the conformal window needed to generate the
hierarchies. However, we find that there is a small class of simple flavor
models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications,
references adde
Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells
Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins
Transfer of MicroRNAs by Embryonic Stem Cell Microvesicles
Microvesicles are plasma membrane-derived vesicles released into the extracellular environment by a variety of cell types. Originally characterized from platelets, microvesicles are a normal constituent of human plasma, where they play an important role in maintaining hematostasis. Microvesicles have been shown to transfer proteins and RNA from cell to cell and they are also believed to play a role in intercellular communication. We characterized the RNA and protein content of embryonic stem cell microvesicles and show that they can be engineered to carry exogenously expressed mRNA and protein such as green fluorescent protein (GFP). We demonstrate that these engineered microvesicles dock and fuse with other embryonic stem cells, transferring their GFP. Additionally, we show that embryonic stem cells microvesicles contain abundant microRNA and that they can transfer a subset of microRNAs to mouse embryonic fibroblasts in vitro. Since microRNAs are short (21–24 nt), naturally occurring RNAs that regulate protein translation, our findings open up the intriguing possibility that stem cells can alter the expression of genes in neighboring cells by transferring microRNAs contained in microvesicles. Embryonic stem cell microvesicles may be useful therapeutic tools for transferring mRNA, microRNAs, protein, and siRNA to cells and may be important mediators of signaling within stem cell niches
- …