116 research outputs found
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report
This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
O-Nitrosobis(trifluoromethyl)hydroxylamine: Unexpected conformational properties and an unusually long (CF3)2NO-NO bond. A combined study of the gaseous and solid states
Journal of the American Chemical Society115156929-6933JACS
- …