1,274 research outputs found
Confidence Level and Sensitivity Limits in High Contrast Imaging
In long adaptive optics corrected exposures, exoplanet detections are
currently limited by speckle noise originating from the telescope and
instrument optics, and it is expected that such noise will also limit future
high-contrast imaging instruments for both ground and space-based telescopes.
Previous theoretical analysis have shown that the time intensity variations of
a single speckle follows a modified Rician. It is first demonstrated here that
for a circular pupil this temporal intensity distribution also represents the
speckle spatial intensity distribution at a fix separation from the point
spread function center; this fact is demonstrated using numerical simulations
for coronagraphic and non-coronagraphic data. The real statistical distribution
of the noise needs to be taken into account explicitly when selecting a
detection threshold appropriate for some desired confidence level. In this
paper, a technique is described to obtain the pixel intensity distribution of
an image and its corresponding confidence level as a function of the detection
threshold. Using numerical simulations, it is shown that in the presence of
speckles noise, a detection threshold up to three times higher is required to
obtain a confidence level equivalent to that at 5sigma for Gaussian noise. The
technique is then tested using TRIDENT CFHT and angular differential imaging
NIRI Gemini adaptive optics data. It is found that the angular differential
imaging technique produces quasi-Gaussian residuals, a remarkable result
compared to classical adaptive optic imaging. A power-law is finally derived to
predict the 1-3*10^-7 confidence level detection threshold when averaging a
partially correlated non-Gaussian noise.Comment: 29 pages, 13 figures, accepted to Ap
A new 1.6-micron map of Titan’s surface
We present a new map of Titan's surface obtained in the spectral 'window' at ∼1.6 μm between strong methane absorption. This pre-Cassini view of Titan's surface was created from images obtained using adaptive optics on the W.M. Keck II telescope and is the highest resolution map yet made of Titan's surface. Numerous surface features down to the limits of the spatial resolution (∼200–300 km) are apparent. No features are easily identifiable in terms of their geologic origin, although several are likely craters
Speckle Control with a remapped-pupil PIAA-coronagraph
The PIAA is a now well demonstrated high contrast technique that uses an
intermediate remapping of the pupil for high contrast coronagraphy
(apodization), before restoring it to recover classical imaging capabilities.
This paper presents the first demonstration of complete speckle control loop
with one such PIAA coronagraph. We show the presence of a complete set of
remapping optics (the so-called PIAA and matching inverse PIAA) is transparent
to the wavefront control algorithm. Simple focal plane based wavefront control
algorithms can thus be employed, without the need to model remapping effects.
Using the Subaru Coronagraphic Extreme AO (SCExAO) instrument built for the
Subaru Telescope, we show that a complete PIAA-coronagraph is compatible with a
simple implementation of a speckle nulling technique, and demonstrate the
benefit of the PIAA for high contrast imaging at small angular separation.Comment: 6 figures, submitted to PAS
Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology
Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness
Speckle noise and dynamic range in coronagraphic images
This paper is concerned with the theoretical properties of high contrast
coronagraphic images in the context of exoplanet searches. We derive and
analyze the statistical properties of the residual starlight in coronagraphic
images, and describe the effect of a coronagraph on the speckle and photon
noise. Current observations with coronagraphic instruments have shown that the
main limitations to high contrast imaging are due to residual quasi-static
speckles. We tackle this problem in this paper, and propose a generalization of
our statistical model to include the description of static, quasi-static and
fast residual atmospheric speckles. The results provide insight into the
effects on the dynamic range of wavefront control, coronagraphy, active speckle
reduction, and differential speckle calibration. The study is focused on
ground-based imaging with extreme adaptive optics, but the approach is general
enough to be applicable to space, with different parameters.Comment: 31 pages, 18 figure
Recommended from our members
Reducing patients’ exposures to asthma and allergy triggers in their homes: an evaluation of effectiveness of grades of forced air ventilation filters
Objective: Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. Methods: We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used “each pass removal efficiency” applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles 70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. Conclusions: The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients
Characterizing the Adaptive Optics Off-Axis Point-Spread Function - I: A Semi-Empirical Method for Use in Natural-Guide-Star Observations
Even though the technology of adaptive optics (AO) is rapidly maturing,
calibration of the resulting images remains a major challenge. The AO
point-spread function (PSF) changes quickly both in time and position on the
sky. In a typical observation the star used for guiding will be separated from
the scientific target by 10" to 30". This is sufficient separation to render
images of the guide star by themselves nearly useless in characterizing the PSF
at the off-axis target position. A semi-empirical technique is described that
improves the determination of the AO off-axis PSF. The method uses calibration
images of dense star fields to determine the change in PSF with field position.
It then uses this information to correct contemporaneous images of the guide
star to produce a PSF that is more accurate for both the target position and
the time of a scientific observation. We report on tests of the method using
natural-guide-star AO systems on the Canada-France-Hawaii Telescope and Lick
Observatory Shane Telescope, augmented by simple atmospheric computer
simulations. At 25" off-axis, predicting the PSF full width at half maximum
using only information about the guide star results in an error of 60%. Using
an image of a dense star field lowers this error to 33%, and our method, which
also folds in information about the on-axis PSF, further decreases the error to
19%.Comment: 29 pages, 9 figures, accepted for publication in the PAS
Photometric characterization of exoplanets using angular and spectral differential imaging
The direct detection of exoplanets has been the subject of intensive research
in the recent years. Data obtained with future high-contrast imaging
instruments optimized for giant planets direct detection are strongly limited
by the speckle noise. Specific observing strategies and data analysis methods,
such as angular and spectral differential imaging, are required to attenuate
the noise level and possibly detect the faint planet flux. Even though these
methods are very efficient at suppressing the speckles, the photometry of the
faint planets is dominated by the speckle residuals. The determination of the
effective temperature and surface gravity of the detected planets from
photometric measurements in different bands is then limited by the photometric
error on the planet flux. In this work we investigate this photometric error
and the consequences on the determination of the physical parameters of the
detected planets. We perform detailed end-to-end simulation with the CAOS-based
Software Package for SPHERE to obtain realistic data representing typical
observing sequences in Y, J, H and Ks bands with a high contrast imager. The
simulated data are used to measure the photometric accuracy as a function of
contrast for planets detected with angular and spectral+angular differential
methods. We apply this empirical accuracy to study the characterization
capabilities of a high-contrast differential imager. We show that the expected
photometric performances will allow the detection and characterization of
exoplanets down to the Jupiter mass at angular separations of 1.0" and 0.2"
respectively around high mass and low mass stars with 2 observations in
different filter pairs. We also show that the determination of the planets
physical parameters from photometric measurements in different filter pairs is
essentialy limited by the error on the determination of the surface gravity.Comment: 13 pages, 7 figures, 4 tables. Accepted for publication in MNRA
- …