426 research outputs found

    Neutrino flavour relaxation or neutrino oscillations?

    Full text link
    We propose the new mechanism of neutrino flavour relaxation to explain the experimentally observed changes of initial neutrino flavour fluxes. The test of neutrino relaxation hypothesis is presented, using the data of modern reactor, solar and accelerator experiments. The final choice between the standard neutrino oscillations and the proposed neutrino flavour relaxation model can be done in future experiments

    Antineutrino-Deuteron Experiment at Krasnoyrsk

    Full text link
    This report is represented the results of some experiments, which carried out at the neutrino underground laboratory of Kranoyarsk nuclear plant.Comment: 8 pages, 3 figure

    Search for electron antineutrino interactions with the Borexino Counting Test Facility at Gran Sasso

    Full text link
    Electron antineutrino interactions above the inverse beta decay energy of protons (E_\bar{\nu}_e>1.8) where looked for with the Borexino Counting Test Facility (CTF). One candidate event survived after rejection of background, which included muon-induced neutrons and random coincidences. An upper limit on the solar νˉe\bar{\nu}_{e} flux, assumed having the 8^8B solar neutrino energy spectrum, of 1.1×105\times10^{5} cm2^{-2}~s1^{-1} (90% C.L.) was set with a 7.8 ton ×\times year exposure. This upper limit corresponds to a solar neutrino transition probability, νeνˉe\nu_{e} \to \bar{\nu}_{e}, of 0.02 (90% C.L.). Predictions for antineutrino detection with Borexino, including geoneutrinos, are discussed on the basis of background measurements performed with the CTF.Comment: 10 pages, 9 figures, 5 table

    Results from the first use of low radioactivity argon in a dark matter search

    Get PDF
    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).Comment: Accepted by Phys. Rev.

    New limits on heavy sterile neutrino mixing in 8B{^{8}\rm{B}}-decay obtained with the Borexino detector

    Full text link
    If heavy neutrinos with mass mνHm_{\nu_{H}}\geq2me m_e are produced in the Sun via the decay 8B8Be+e++νH{^8\rm{B}} \rightarrow {^8\rm{Be}} + e^+ + \nu_H in a side branch of pp-chain, they would undergo the observable decay into an electron, a positron and a light neutrino νHνL+e++e\nu_{H}\rightarrow\nu_{L}+e^++e^-. In the present work Borexino data are used to set a bound on the existence of such decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV mνH\leq m_{\nu_{H}} \le 14 MeV to be UeH2(1034×106)|U_{eH}|^2\leq (10^{-3}-4\times10^{-6}) respectively. These are tighter limits on the mixing parameters than obtained in previous experiments at nuclear reactors and accelerators.Comment: 7 pages, 6 figure
    corecore