298 research outputs found
The scientific evaluation of music content analysis systems: Valid empirical foundations for future real-world impact
We discuss the problem of music content analysis within the formal framework of experimental design
Text Analytics for Android Project
Most advanced text analytics and text mining tasks include text classification, text clustering, building ontology, concept/entity extraction, summarization, deriving patterns within the structured data, production of granular taxonomies, sentiment and emotion analysis, document summarization, entity relation modelling, interpretation of the output. Already existing text analytics and text mining cannot develop text material alternatives (perform a multivariant design), perform multiple criteria analysis,
automatically select the most effective variant according to different aspects (citation index of papers (Scopus, ScienceDirect, Google Scholar) and authors (Scopus, ScienceDirect, Google Scholar), Top 25 papers, impact factor of journals, supporting phrases, document name and contents, density of keywords), calculate utility degree and market value. However, the Text Analytics for Android Project can perform the aforementioned functions. To the best of the knowledge herein, these functions have not been previously implemented; thus this is the first attempt to do so. The Text Analytics for Android Project is briefly described in this article
Validating generic metrics of fairness in game-based resource allocation scenarios with crowdsourced annotations
Being able to effectively measure the notion of fairness is of vital importance as it can provide insight into the formation and evolution of complex patterns and phenomena, such as social preferences, collaboration, group structures and social conflicts. This paper presents a comparative study for quantitatively modelling the notion of fairness in one-to-many resource allocation scenarios - i.e. one provider agent has to allocate resources to multiple receiver agents. For this purpose, we investigate the efficacy of six metrics and cross-validate them on crowdsourced human ranks of fairness annotated through a computer game implementation of the one-to-many resource allocation scenario. Four of the fairness metrics examined are well-established metrics of data dispersion, namely standard deviation, normalised entropy, the Gini coefficient and the fairness index. The fifth metric, proposed by the authors, is an ad-hoc context-based measure which is based on key aspects of distribution strategies. The sixth metric, finally, is machine learned via ranking support vector machines (SVMs) on the crowdsourced human perceptions of fairness. Results suggest that all ad-hoc designed metrics correlate well with the human notion of fairness, and the context-based metrics we propose appear to have a predictability advantage over the other ad-hoc metrics. On the other hand, the normalised entropy and fairness index metrics appear to be the most expressive and generic for measuring fairness for the scenario adopted in this study and beyond. The SVM model can automatically model fairness more accurately than any ad-hoc metric examined (with an accuracy of 81.86%) but it is limited by its expressivity and generalisability.Being able to effectively measure the notion of fairness is of vital importance as it can provide insight into the formation and evolution of complex patterns and phenomena, such as social preferences, collaboration, group structures and social conflicts. This paper presents a comparative study for quantitatively modelling the notion of fairness in one-to-many resource allocation scenarios - i.e. one provider agent has to allocate resources to multiple receiver agents. For this purpose, we investigate the efficacy of six metrics and cross-validate them on crowdsourced human ranks of fairness annotated through a computer game implementation of the one-to-many resource allocation scenario. Four of the fairness metrics examined are well-established metrics of data dispersion, namely standard deviation, normalised entropy, the Gini coefficient and the fairness index. The fifth metric, proposed by the authors, is an ad-hoc context-based measure which is based on key aspects of distribution strategies. The sixth metric, finally, is machine learned via ranking support vector machines (SVMs) on the crowdsourced human perceptions of fairness. Results suggest that all ad-hoc designed metrics correlate well with the human notion of fairness, and the context-based metrics we propose appear to have a predictability advantage over the other ad-hoc metrics. On the other hand, the normalised entropy and fairness index metrics appear to be the most expressive and generic for measuring fairness for the scenario adopted in this study and beyond. The SVM model can automatically model fairness more accurately than any ad-hoc metric examined (with an accuracy of 81.86%) but it is limited by its expressivity and generalisability.peer-reviewe
Towards player’s affective and behavioral visual cues as drives to game adaptation
Recent advances in emotion and affect recognition can play a crucial role in game technology. Moving from the typical game controls
to controls generated from free gestures is already in the market. Higher level controls, however, can also be motivated by player’s
affective and cognitive behavior itself, during gameplay. In this paper, we explore player’s behavior, as captured by computer vision
techniques, and player’s details regarding his own experience and profile. The objective of the current research is game adaptation
aiming at maximizing player enjoyment. To this aim, the ability to infer player engagement and frustration, along with the degree of
challenge imposed by the game is explored. The estimated levels of the induced metrics can feed an engine’s artificial intelligence,
allowing for game adaptation.This research was supported by the FP7 ICT project SIREN
(project no: 258453)peer-reviewe
Improving Individual Predictions using Social Networks Assortativity
Social networks are known to be assortative with
respect to many attributes, such as age, weight, wealth, level
of education, ethnicity and gender. This can be explained by
influences and homophilies. Independently of its origin, this
assortativity gives us information about each node given its
neighbors. Assortativity can thus be used to improve individual
predictions in a broad range of situations, when data are missing
or inaccurate. This paper presents a general framework based on
probabilistic graphical models to exploit social network structures
for improving individual predictions of node attributes. Using
this framework, we quantify the assortativity range leading to an
accuracy gain in several situations. We finally show how specific
characteristics of the network can improve performances further.
For instance, the gender assortativity in real-world mobile phone
data changes significantly according to some communication
attributes. In this case, individual predictions with 75% accuracy
are improved by up to 3%
Replica conditional sequential monte carlo
© 2019 International Machine Learning Society (IMLS). We propose a Markov chain Monte Carlo (MCMC) scheme to perform state inference in non-linear non-Gaussian state-space models. Current state-of-the-art methods to address this problem rely on particle MCMC techniques and its variants, such as the iterated conditional Sequential Monte Carlo (cSMC) scheme, which uses a Sequential Monte Carlo (SMC) type proposal within MCMC. A deficiency of standard SMC proposals is that they only use observations up to time t to propose states at time t when an entire observation sequence is available. More sophisticated SMC based on lookahead techniques could be used but they can be difficult to put in practice. We propose here replica cSMC where we build SMC proposals for one replica using information from the entire observation sequence by conditioning on the states of the other replicas. This approach is easily parallelizable and we demonstrate its excellent empirical performance when compared to the standard iterated cSMC scheme at fixed computational complexity
Comparative Profiling
Generative AI models are at the forefront of advancing creative and analytical tasks, pushing the boundaries of what machines can generate and comprehend. Among these, latent diffusion models represent significant advancements in generating high-fidelity audio and images. This study introduces a systematic approach to study GPU utilisation during the training of these models by leveraging Weights & Biases and the PyTorch Profiler for detailed monitoring and profiling. Our methodology is designed to uncover inefficiencies in GPU resource allocation, pinpointing bottlenecks in the training pipeline. The insights gained aim to guide the development of strategies for enhancing training efficiency, potentially reducing computational costs and accelerating the development cycle of generative AI models. This contribution not only highlights the critical role of resource optimisation in scaling AI technologies but also opens new avenues for research in efficient model training
- …
