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Abstract—Social networks are known to be assortative with
respect to many attributes, such as age, weight, wealth, level
of education, ethnicity and gender. This can be explained by
influences and homophilies. Independently of its origin, this
assortativity gives us information about each node given its
neighbors. Assortativity can thus be used to improve individual
predictions in a broad range of situations, when data are missing
or inaccurate. This paper presents a general framework based on
probabilistic graphical models to exploit social network structures
for improving individual predictions of node attributes. Using
this framework, we quantify the assortativity range leading to an
accuracy gain in several situations. We finally show how specific
characteristics of the network can improve performances further.
For instance, the gender assortativity in real-world mobile phone
data changes significantly according to some communication
attributes. In this case, individual predictions with 75% accuracy
are improved by up to 3%.

Keywords—Belief propagation, assortativity, homophily, social
networks, mobile phone metadata.

I. INTRODUCTION
Social networks currently drive an increasing attention

in the research community, as they are found in diverse
situations and are described by huge amounts of data notably
collected through the web and mobile devices. Facebook,
Twitter, Google+, mobile phone networks and other large-
scale social graphs are nowadays largely studied for predicting
and analyzing individual demographics [1]–[3]. This type
of information is indeed a key input for the establishment
of economic and social policies, health campaigns, market
segmentation, etc. [3]–[5]. Nevertheless, especially (but not
exclusively) in developing countries, such statistics are often
scarce or even lacking, as local censuses are costly, rough,
time-consuming and hence rarely up-to-date [6]. This is the
reason why recent researches address this problem by inferring
demographics from large social networks [4], [7], in order to
ease the access of policy makers and NGO’s toward more
reliable information.

Social networks contain individual information about their
users (e.g. generated tweets for Twitter), in addition to a
graph topology information. These graphs present specific
structures carrying many different characteristics, such as
small-worldness or heterogeneous degree distribution [8]. The
assortativity of social networks, defined as the nodes tendency
to be linked to others which are similar in some sense [9],
with respect to various demographics of their individuals

such as gender, age, weight, income level, education, race,
religion, etc. is well documented in the literature [10]–[14].
This property has been theorized to come either from influ-
ences or homophilies or a combination of both. For instance,
Rosenquiest et al. show that social influence can enhance
the spreading of alcohol consumption [15] and Madan et al.
find that weight changes in an individual can be influenced
by exposure to overweight peers with unhealthy habits or
inactive lifestyles [11]. On the other hand, the concept of
homophily is easily understood as the saying goes: “birds of a
feather flock together”, which means that people sharing some
characteristics tend to more communicate. For instance, we
observe more connections between people of the same age
and gender [10].

Independently of its cause, this assortativity can be used for
individual prediction purposes when some labels are missing
or uncertain, e.g. for demographics prediction in large net-
works. Some methods are currently developed to exploit that
assortativity [2], [16]. However, few studies take the global
network structure into account [5], [17]. Also, to the best of
our knowledge, no research quantifies how the performances
are related to the assortativity strength.

We here propose a framework based on probabilistic graph-
ical models (PGMs) to exploit the social network structure
for individual prediction improvement in a general context.
The method can be applied while only knowing the labels
of a limited number of pairs of connected users in order to
evaluate the assortativity, and class probability estimates for
each user. These probabilities may for example be obtained
by applying a machine learning algorithm exploiting the node-
level information, after it has been trained on the individual
data of the users with known labels. A loopy belief propagation
algorithm is applied on a Markov random field modeling the
network to improve the accuracy of these prior class probabil-
ity estimates. The model is able to benefit from the strength
of the links, quantified for example by the number of contacts.
The estimation of the network assortativity allows to optimally
tune the model parameters, by defining synthetic graphs. The
latter simulations permit (1) to prevent overfitting a given (real)
network structure, (2) to perform the parameter tuning off-line
and (3) to avoid requiring the labeled users to form a connected
graph. These simulations also allow to quantify the assor-
tativity range leading to an accuracy gain over an approach
ignoring the network structure. The methodology is validated
on mobile phone data to predict gender. As the assortativity
required to significantly improve the quality of the prior class978-1-5090-6638-4/17/$31.00 c© 2017 IEEE
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probabilities might not always be reached in practice, we show
that the assortativity significantly changes according to some
communication attributes, which can in turn be exploited to
improve the predictions by appropriately adapting the model
parameters in different parts of the network.

The paper is organized as follows. The general methodol-
ogy to improve attribute predictions in a network is detailed
in Section II. Its key parameters are highlighted and their
tuning based on simulated assortative networks is detailed.
In Section III, we introduce the real-world data sets which
are studied, analyze their underlying gender homophilies and
assess the performances of our method compared to a baseline
algorithm. Section IV then discusses the results, while summa-
rizing the related work. Conclusions are drawn in Section V.

In the following, uppercase and lowercase letters denote
respectively random variables and observed values.

II. METHOD
Given an arbitrary social network G, the goal is to exploit

its assortativity to infer, for each user i, an individual scalar
attribute (or class) Yi taking values in a finite alphabet Y . This
class can be, for instance, the age or gender of each individual.
G is defined as a pair (V, E), where V and E are respectively
the sets of nodes (one for each user) and edges (connecting
each pair of individuals who are in contact), with |V| = N .
The available individual information about user i is denoted by
the vector Xi. In the case of Twitter, xi consists in the tweets
generated by user i, and possibly in public profile details (e.g.
the user’s name). It is assumed that estimates p̂Yi|Xi

(yi|xi) of
the class membership probabilities pYi|Xi

(yi|xi) are provided.
These can be seen as “initial predictions” for each user i ∈ V ,
which can encode deterministic information (known labels)
or which can be outputted by a machine learning algorithm
applied on the individual features xi to predict the class yi.
If such information is missing for some users, uniform class
probabilities are used.

Our inference model is built in Section II-A based on the
social network. Next, in Section II-B, by simulating individual
predictions and synthetic networks, we assess how the perfor-
mance enhancement is related to the network assortativity and
to the quality of the initial set of predictions, both in terms
of accuracy and distribution. The latter procedure permits to
determine the best model parameters.

A. Probabilistic graphical model
In order to improve the predictions p̂Yi|Xi

(yi|xi), we use
an undirected PGM (also called Markov random field, MRF)
with one node (resp. one edge) for each user (resp. link) in
the social network. The random variables Yi that we want
to infer are assigned to the nodes of the network; each link
represents a conditional dependency between two of them. As
indicated in Fig. 1, the graphical model contains N additional
nodes associated to the Xi’s, each one being linked to its
corresponding Yi (as in [18] for instance). The relationships
between the individual data Xi and the label Yi of each user
i are hence captured, as well as the direct mutual influence
of adjacent users. We choose an undirected graphical model
to reflect the statistical dependencies between the considered
random variables, since there is no causal link between the
labels in the social network which could be represented with
a directed PGM (also, their joint distribution does not admit
a natural factorization through conditional probabilities) [19].
Instead, our MRF represents conditional independencies. As

Fig. 1. Toy example of the MRF. There are two nodes per user i in the
graph, Yi being her class and Xi her individual data.

indicated by the graph separation property [20], the joint
probability distribution p(Y ,X) modeled by the PGM, where
Y (resp. X) concatenates all the Yi’s (resp. Xi’s), admits
the factorization pY ,X(y, x) = pY (y) ·

∏
i

pXi|Yi
(xi|yi). The

underlying assumption is that Xi given Yi is independent from
Yj and Xj , for all j 6= i.

We choose a nonmaximal cliques representation through
pairwise interactions for the distribution pY (y), allowing to
considerably reduce the inference cost at the expense of taking
into account higher order relationships, leading to

pY ,X(y, x) =
1

Z

∏
i

ψ(yi, xi)
∏

(j,k)∈E

Ψ(yj , yk), (1)

where Z is a normalization constant and ψ and Ψ are
called the node and edge potentials respectively. By identi-
fication with the previous factorization, the ith node potential
ψ(yi, xi) = pXi|Yi

(xi|yi) ∝
pYi|Xi

(yi|xi)

pYi
(yi)

corresponds to the
likelihood of the ith user’s individual data knowing her class.
It can be estimated using the first predicted class probability
p̂Yi|Xi

(yi|xi) and the estimated class prior p̂Yi
(yi) defined as

the proportion of users initially predicted as yi. In order to
reflect the assortativity of the links, a simple way of defining
the edge potential Ψ(yj , yk) for each pair of adjacent users j
and k is given by

Ψ(yj , yk) =

{
sjk, if yj = yk
1− sjk, if yj 6= yk

(2)

with sjk ∈ [0, 1] and yj , yk ∈ Y . This way, if sjk is greater
than 0.5, it will encourage users j and k to share the same
class. At the opposite, an sjk value smaller than 0.5 will
favor neighboring users j and k to have different labels (anti-
homophilic contacts). This parameter can hence be interpreted
as the probability for edge (j, k) to be homophilic. Depending
on the application, one may have access to some edge weights,
which can be used to model these sjk. Section III-C provides
an example of such a modeling in the context of a real-world
application. Another option is to employ the same sjk value
for all the edges.

Along with the factorization of the joint probability distri-
bution, the defined PGM structure allows to infer the users’
class by estimating the posterior probabilities pYi|X at low
cost. Exact inference on the loopy MRF is intractable, as it
would require to use the junction tree algorithm [20] which,
even if all the maximal cliques in G were identified, has an
exponential complexity in the size of the largest one. This
motivates the use of factorization (1), with pairwise potentials



only and leads us to use the loopy belief propagation (LBP)
algorithm [20]. The latter provides estimates of the posterior
probabilities p̂Yi|X(yi|x) for each node i in the graph and for
all yi ∈ Y . These estimates approximate the true posterior
probabilities in the Bethe-Kikuchi sense [19]. The predicted
class for user i is then given by arg max

yi∈Y
p̂Yi|X(yi|x).

B. Parameter tuning
In our model, the sjk values of the edge potential (2) have

to be assigned. As these parameters reflect the confidence in
the (dis-)assortative character of the edges, their tuning should
be related to the network assortativity. The latter quantity has
hence to be quantified. For this purpose, Newman introduced
the assortativity coefficient of a network, denoted by r [14].
It allows to assess the correlations between the attributes of
adjacent nodes such as the node degree, the gender or the
user age1. It can be derived thanks to the mixing matrix M =
[mij ]

L
i,j=1, where mij is the fraction of edges connecting a

vertex of class i to a vertex of class j, and L is the total
number of classes. For an undirected graph, M is symmetric.
Each of its row sums, denoted by mi, gives the proportions of
ends of edges from class i. In the case of a binary attribute,
the mixing matrix becomes

M =

(
m11 m12

m21 m22

)
, (3)

and the assortativity coefficient is defined as

r =
m11 +m22 −m2

1 −m2
2

1−m2
1 −m2

2

. (4)

If all the edges lie between pairs of people of the same class,
the network is perfectly assortative and it is straightforward to
see that r = 1. At the opposite, in a perfectly disassortative
network, there can only be as many people from each of the
two classes at the ends of the edges, since each edge is between
two users from distinct classes. Hence, m1 = m2 = 0.5
and r is equal to −1. In the intermediate case, a random
mixing occurs when the classes of two connected users are
independent. Hence m11 = m2

1 and m22 = m2
2, which implies

that r = 0. Many studies show that social networks tend
to be more assortative than other ones (e.g. technological or
biological) [21], with positive assortativity coefficients ranging
up to 0.6 [8] for attributes like race of partners in a bipartite
graph of sexual partnerships2.

As it is most of the time unknown, r should be reliably
estimated in a real setting. One possibility consists in edge
sampling, as shown in Section III-C in the case of gender
prediction in a mobile phone network. We thus assume in the
following that an accurate estimate of r is provided.

For a given network, the model parameters sjk of the edge
potential Ψ can be optimized according to our confidence in
the (dis-)assortativity of each link (j, k). If our sole knowledge
about assortativity is r, the same sjk value (denoted by s) can
be used for all the edges. This s expresses our confidence in the
network information, which is proportional to |r|: as indicated
by (1), large |0.5 − s| values dilute the initial predictions
(implied in the node potential ψ) and give a heavy weight
to the network, while at the opposite an s value close to 0.5

1For such ordered multi-valued attributes, a numeric coefficient is defined.
2According to McPherson et al., this attribute is among the most homophilic

ones [10].
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Fig. 2. (a) Regular lattice, (b) binary label assignation and (c) final graph
obtained after some edges rewiring, with 15 nodes, a mean degree k = 4 and
r ≈ 0.3. The homogeneous edges are depicted in red.

will not change the initial predictions very much, since Ψ will
take similar values for homo- and heterogeneous edges. The
definition of synthetic networks with assortativity coefficients
close to a given r allows us to find optimal s. To this aim, a
grid search is performed: LBP is applied on the MRF using
each value from the grid and the one achieving the highest
average performances on different synthetic networks is kept
as optimal.

The construction of the synthetic networks relies on the
same principle as the Watts-Strogatz small-world graphs [22].
The idea is to begin with a regular circular lattice GR =
(VR, ER), each of the n nodes being linked to its k closest
neighbors in a ring topology, where k is even. The attribute
values yi’s that we want to infer are randomly assigned to each
node i to follow a given distribution. Some edges are then
rewired in the graph until the obtained assortativity coefficient
is close enough to the targeted one, denoted by r. This last
step is detailed by the following procedure, illustrated in
Fig. 2.

1: rR ← assortativity of GR ;
2: while |rR − r| > tolerance do
3: if rR < r then
4: Randomly select an edge (i, j) ∈ ER which is not a

bridge and such that yi 6= yj
5: ER ← ER \ (i, j)
6: Add a random edge (i, l) in GR such that yi = yl
7: else
8: Randomly select an edge (i, j) ∈ ER which is not a

bridge and such that yi = yj
9: ER ← ER \ (i, j)

10: Add a random edge (i, l) in GR such that yi 6= yl
11: end if
12: rR ← assortativity of GR;
13: end while

It remains to endow the synthetic networks nodes with
prior class probability estimates p̂Yi|Xi

(yi|xi). In a given ap-
plication, a machine learning algorithm predicting the classes
yi from the individual features xi gives us access to such
prior information for all the users of the real network. We
can then sample values from the distribution of the provided
p̂Yi|Xi

(yi|xi) and assign them to the nodes of the synthetic
graphs. Nevertheless, in order to analyze the behavior of our
method in a broad range of situations, we here generate these
prior probabilities according to three synthetic distributions
(linear, exponential and bi-uniform, which are depicted in
Fig. 3). Inverse transform sampling then allows to study how
the performances are related to the quality of the initial set of
predictions both in terms of accuracy and distribution.

As an example, the results of the parameter tuning proce-
dure are depicted in Fig. 4 for an arbitrary binary attribute.
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Fig. 3. (a) Linear, (b) exponential and (c) bi-uniform distributions of true
class prior probabilities, leading to an initial accuracy of β. ci denotes the
true class of user i.
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Fig. 4. (a) Optimal s parameter of the edge potential (2) (chosen in a grid
with a step of 0.05) and (b) mean accuracy gain (in %) over 50 random
networks with 200 nodes and a mean degree k = 8 each, as a function of the
initial accuracy (in %) of the predictions and the assortativity coefficient for a
binary attribute. The initial predictions are simulated with a linear distribution.

The best s value and the corresponding mean accuracy gain
are provided as a function of the assortativity and the initial
accuracy of the predictions (β). For each pair of β and r,
the optimal s value is selected as the one maximizing the
average accuracy over 50 random networks with 200 vertices
containing as many nodes from each one of the two classes
(the randomness covers the edge rewiring in the networks, the
attribute assignations and the sampling of the prior probabil-
ities). The prior probabilities are in this case simulated using
the linear distribution.

It can be observed that the optimal s values are almost in-
dependent of β and hence the parametrization mainly depends
on the assortativity coefficient. Also, the chosen s evolves in a
consistent way as a function of r, increasing from smaller val-
ues for disassortative networks to higher values for assortative
ones. Using these s values, Fig. 4b shows that the accuracy
gain is almost always positive, except for some particular pairs
of r and β, especially when the assortativity is within the
range [−0.1, 0.1]. This observation is consistent as our PGM is
designed to exploit the assortativity, which is absent if r = 0
(random mixing). We finally note that the variability of the
accuracy gains on the random synthetic networks do not affect
the choice of the optimal s (corresponding results not shown).

The latter analysis has also been conducted with the other
prior distributions. Similar conclusions are drawn for the
exponential one but much lower accuracy gains are obtained
in the case of the bi-uniform one, for reasons detailed in sec-
tion III-C3. The extension to the case of non-binary attributes
is straightforward, possibly using the numeric assortativity
coefficient (e.g. in the case of the age attribute).

III. MOBILE PHONE NETWORKS
The validation task considered in this section consists in

gender prediction using two undirected and weighted mobile
phone networks from a developed European country, denoted

by GS and GL. The data analysis of this work is only conducted
on GL, while the performances assessment is performed on GS .
This allows to avoid overfitting the particular network GL.

Predicting gender is of great interest to assess a demo-
graphic structure. For instance, this information is required to
study gender disparities in diverse countries, allowing to refine
or even undermine the available reports using social networks
such as Google+ [3], Twitter or a mobile phone network.
Among social networks, mobile phone data currently raise the
interest of the research community and practitioners, as they
become more and more ubiquitous, while being freely acces-
sible at massive scale, automatically collected in real-time and
powerful indicators of people behaviors [23]. They also often
consist in the most accessible type of population information
in developing countries. A shortcoming to their use however
is that they often lack even the most basic information about
their carrier, such as the gender, age or socioeconomic status.
Indeed, most of the mobile phone connections worldwide
are prepaid, as well in developing as in developed countries.
Although these connections provide fine-grained information
about the mobile phone usage, they do not give access to basic
demographics.

In this section, the data sets are introduced and some
of their features highlighted, showing significant gender ho-
mophilies which will be exploited through the inference pro-
cess. In this case, Xi is the individual metadata of user i and Yi
is the random variable for her gender, defined on the alphabet
Y= {F,M} with F and M resp. for a female and male.

A. Data description
In both networks GL and GS , each node refers to one

individual and an undirected edge binds any pair of users who
exchanged at least one phone call or text during a fixed time
period. The gender is known for the majority of the users.
The communication attributes (extracted from the CDRs) of
any edge e are the number of texts (SMS), the number of
calls (CALLS) and the total duration of the calls (CALL_DUR).
Different functions of these edge attributes can be defined. For
example, the sum of SMS and CALLS is denoted by S_AND_C
and counts the number of contacts between two given persons,
which is well-suited to define the strength of a contact [24].

Table I provides general features of both networks, as
well as the values of the three edge attributes distinguished
by gender. As indicated, the communication patterns differ
between hetero- and homogeneous (M-M and F-F) contacts.
This reflects the stronger relationships occurring within the
couples. Indeed, for instance in GL, there are on average 6.4
and 9.7 contacts (calls and texts) respectively between any
homo- and heterogeneous pairs during the observation period.
The same behavior is observed for the number of texts or calls
distinctly. The mobile phone use of each individual according
to her gender is not analyzed in this study, since this kind of
information is exploited to provide the individual predictions.
As the gender is binary, its assortativity is defined by (4). In
GS and GL, a moderate gender assortative mixing is observed.

B. Observational analysis
Since the strength of the heterogeneous communications

(in terms of number of texts and calls exchanged) tend to
overcome the one of the homogeneous contacts, the weights
of an edge might give clues on its likelihood to be rather
hetero- or homogenous. The subset of the strongest edges
might have a completely different assortativity than the whole



TABLE I. SOME FEATURES OF THE NETWORKS. IF ”EDGE TYPE” IS
OMITTED, THE CHARACTERISTIC CONCERNS THE WHOLE NETWORK.

”HOMOGENEOUS” (HOMO.) AND ”HETEROGENEOUS” (HETERO.) REFER
TO THE GENDER OF THE PERSONS LINKED BY THE EDGES.

Edge type Network GL Network GS
Covered time period 15 days 3 months
Number of nodes 160818 19779
Number of edges 390778 78441
r (for gender) 0.3 0.26
Prop. of homo. edges (%) 66.47 63.5
Prop. of male nodes (%) 56.38 53.44
Mean SMS homo. 3.58 15

hetero. 5.74 25.8
Mean CALLS homo. 2.84 5.3

hetero. 3.96 7.9
Mean CALL_DUR homo. 13min 40s 16min

hetero. 15min 20s 19min 20s
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Fig. 5. Gender assortativity coefficient in GL when the edges with S_AND_C
values larger than some increasing thresholds are kept (strong part) or
discarded (weak part). The red curve (right y-axis in log. scale) indicates
the number of edges in the strong part, denoted by nstrong .

network. As the performance gains increase with the assor-
tativity amplitude, identifying stronger (anti-)homophilic sub-
groups is of great interest. This section shows that r can indeed
significantly change when considering subsets of the edges
with specific attribute values.

We analyze the evolution of the assortativity coefficient
when sub-graphs are constructed by only considering the edges
with a scalar combination of their attributes above a threshold,
the latter being progressively increased. For a given threshold
and attribute combination, the strongest edges (according to
this combination) constitute the strong part of the graph,
while the weaker part refers to the rest. Several attribute
combinations have been considered, including the attributes
themselves. The most significant evolution of r is obtained
using S_AND_C as a measure of link strength and is depicted
in Fig. 5. The assortativity coefficient in the strong part (i.e.
with edges such that S_AND_C is higher than the threshold
on the x-axis) is denoted by rstrong, while rweak is the one
of the weak part. nstrong refers to the number of edges in
the strong part. The dotted lines indicate the threshold and
the corresponding rweak, rstrong and nstrong values such that
there are 1% of the edges in the strong part of GL. Using this
partition, rweak is still equal to about 0.3, but rstrong reaches
−0.3 meaning that the strong part is rather anti-homophilic,
as suggested by Table I. From a more general point of view,
as the threshold on S_AND_C increases, rstrong decreases
toward disassortative values. rweak remains quite stable since
the major part of the edges has small S_AND_C, as indicated
by the evolution of nstrong in logarithmic scale.
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Fig. 6. Gender assortativity coefficient in GL when only the edges with SMS
and CALLS values larger than some increasing thresholds are preserved. The
top (resp. right) histogram gives the number of edges (ne) with CALLS (resp.
SMS) larger than the corresponding value on the x-axis (resp. y-axis), on a
log. scale.

A refinement of the previous analysis consists in combining
two thresholds on two different edge attributes in order to
observe how rstrong behaves. Fig. 6 depicts such an evolution
using the SMS and CALLS attributes. The evolution of rweak as
a function of the two thresholds is negligible: it stays around
0.3, as in Fig. 5. Again, this figure highlights that the strongest
edges are more disassortative. However, the strong part cannot
be very large and have a significantly negative r in the mean
time, as most of the edges have low SMS and CALLS values.

In section II-B, we show how to select a common sjk
parameter for all the edges of a network with a given r. On
the other hand, the above analysis tells us that the assortativity
significantly changes in distinct parts of a mobile phone
network, decreasing as the strength of the links increase. We
can exploit this information by using different s values in the
strong and weak parts of the network, respectively denoted by
sstrong and sweak. However modeling sjk as a step function
is questionable. Indeed sjk is the posterior probability for the
edge (j, k) to be homophilic given its weights. Since this
posterior probability is unlikely to abruptly change for some
weight value, a smooth function should model it, with upper
and lower plateau values corresponding to sweak and sstrong
respectively. Determining whether the edge (j, k) is hetero-
or homophilic can be seen as a binary classification problem,
with the edge weights as features. Hence, inspired by logistic
regression, we model sjk with a sigmoid function parametrized
by a fixed linear combination S_AND_C of the edge weights,

sjk(S_AND_C) =
sweak − sstrong

1 + eG·(S_AND_C−x0)
+ sstrong, (5)

where G and x0 are two parameters to assign. Following the
previous observations, the strong part of the network is defined
as the set of the 1% strongest edges in terms of number of con-
tacts. The plateaus sweak and sstrong are tuned using the syn-
thetic networks (with constant sjk values) according to rweak

and rstrong. Let us further denote by xU and xL the x-values
at which the sigmoid reaches sstrong + 0.99 (sweak − sstrong)
and sstrong + 0.01 (sweak − sstrong). G and x0 are fixed such
that there are approximately 1% of the edges with a number
of contacts lower (resp. higher) than xU (resp. xL). Fig. 7
presents the resulting smooth model of the sjk’s for GS , which
will be used later on to assess our methodology. The estimated
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rweak and rstrong in GS lead us to choose sweak = 0.55
and sstrong = 0.4. The percentages below the curve indicate
quantiles of the S_AND_C distribution.

C. Results
The overall assortative character of GL, along with the ob-

served differences between its strong and weak parts, indicates
that the genders of the neighbors of an individual might be
useful to predict its own gender. Our methodology is now
tested on GS , while simulating individual prior predictions.
The obtained performances are compared with the results of a
baseline method, termed the reaction-diffusion algorithm [5].

1) Reaction-Diffusion algorithm: The reaction-diffusion
(R-D) algorithm iteratively updates the predicted gender prob-
abilities of each user by computing a weighted sum of its
current gender probabilities and the ones of her neighbors,
starting from a prior information as in our setting. R-D is
equivalent to the consistency method [25], with a regularization
parameter fixed to 0.5. The notation pti := p̂Xi(M) denotes
the estimated probability for user i to be a male at iteration
t. These probability estimates are updated at each iteration for
each user i ∈ V in the following way:

pt+1
i =

1

2
·

p0
i +

1

|N (i)|
·

 ∑
j∈N (i)

ptj

 ∀i ∈ V (6)

until convergence, with N (i) the set of neighbors of user i.
2) Estimating the assortativity: The best edge potential

for a given r can be estimated using the synthetic networks.
However the assortativity of a given real network still needs
to be estimated. To this end, we propose to collect the gender
of an a priori fixed number of pairs of adjacent users in the
considered graph G, for example by carrying out a mobile
phone survey, and then to use these edges to compute an
estimate of r in G. This procedure has been tested on GL,
since it is larger than GS , which allows to consider more
independent edge samplings. Fig. 8 presents the results. The
assortativity estimates are roughly unbiased, while the variance
of the estimator decreases toward 0.029, 0.022 and 0.014 when
the gender of respectively 1, 000, 2, 000 and 5, 000 pairs of
adjacent users are known. Hence knowing the gender of about
2k pairs of neighbors is sufficient to reliably estimate r. Indeed,
an error of 0.05 on its estimation induces at worst an error of
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Fig. 8. Estimated r as a function of the number of randomly selected pairs
of adjacent users with known gender in GL. For each number in abscissa, the
edge selection is performed 50 times. The vertical distance between each mean
estimated r (red squares) and the green lines gives the standard deviation of
the estimation. The horizontal blue line indicates the true r in GL (= 0.3).
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Fig. 9. Accuracy and recall gains when varying the initial accuracy β in
GS , averaged over 50 random simulations of the first predictions using a
linear distribution. The filled areas delimit intervals of one standard deviation
around the mean gains.

0.05 on the sjk value, as indicated by Fig. 4a. A sensitivity
analysis (not presented) shows that such an error on the sjk
leads to negligible performance losses.

It is noteworthy that using distinct edge potential param-
eters sstrong and sweak in the strong and weak parts of the
network requires to estimate r within these two parts. As the
strong part tends to be significantly smaller, the estimation
of rstrong in a real setting should be carefully performed.
Meanwhile, the edges used to estimate r may be, for instance,
used as a training set to provide individual gender predictions.

3) Performances: Fig. 9 shows the accuracy and recall
gains of LBP using our model on GS , over simulated initial
predictions using the linear distribution, for varying β. The
well balanced recalls indicate that the weighting by the class
prior in the node potential ψ is effective, avoiding to favor
the dominant class (M ) to the expense of the other one.
Although optimal sjk values are quite independent of β, the
performances are not, with highest accuracy gains in the range
[70, 85]%. This range covers the accuracies reached by state-
of-the-art techniques aiming to predict gender using individual-
level features [4], [5], [26]. Likewise, for an assortativity coef-
ficient similar to the one of GS (≈ 0.25), the accuracy gains on
synthetic networks are significant when β ∈ [0.62, 0.92]. This
result is natural, as near-perfect initial accuracies do not let
many opportunities to improve the predictions, while almost
random ones induce too rough node potentials.



TABLE II. MEAN PERFORMANCES ON GS OF THE BASELINE UPDATE
(R-D) SCHEME (6) AND OF LBP, FOR 50 DIFFERENT ASSIGNATIONS OF
THE FIRST PREDICTIONS. THE THREE DEFINED DISTRIBUTIONS OF THE

FIRST PREDICTIONS ARE CONSIDERED WITH AN INITIAL ACCURACY
β = 75%. ∆ REFERS TO THE GAINS OVER THE PRIOR PREDICTIONS.

LBP R-D LBP − R-D

Linear ∆Accuracy 3.17 2.01 1.16
∆RecallM 3.78 2.73 1.05
∆RecallF 2.47 1.18 1.29

Exponential ∆Accuracy 2.54 1.57 0.97
∆RecallM 2.75 2.14 0.61
∆RecallF 2.3 0.91 1.39

In
iti

al
di

st
ri

bu
tio

n

Bi-uniform ∆Accuracy -0.52 -1.4 0.88
∆RecallM -1.12 -0.95 -0.17
∆RecallF 0.16 -1.92 2.08

Table II gives the average accuracy and recall gains of both
the baseline (R-D) and LBP in GS over initial predictions with
β = 0.75. Neither the baseline nor LBP allows to improve
the predictions when the bi-uniform distribution is used. On
the other hand, LBP increases the accuracy by more than
3 and 2.5% when the linear and exponential distributions
are respectively chosen, overcoming the R-D algorithm. The
results for the bi-uniform distribution can be explained by the
fact that, in this case, only the sign of p̂Yi|Xi

(yi = M |xi)−0.5
brings information. On the other hand, its amplitude also
matters when using the two other distributions, which would
also be probably the case in a real setting. From this respect,
the bi-uniform distribution might not be very realistic.

IV. RELATED WORK AND DISCUSSION
Different researches exploit mobile phone data for health-

care, epidemics containment or marketing study purposes [27]–
[29]. In each context, the knowledge of the users’ gender is of
great importance. Most of the recent works on demographics
prediction use classical machine learning algorithms on mobile
phone data for predicting gender, age, income level or even
personality [4], [16], [26], [30]. These algorithms rely on
features defined for each user and reflecting their mobile phone
usage at an individual scale, such as the recharge rate of
their prepaid cards, spending speed, total call duration, etc.
Some studies further refine such standard metadata by deriving
diverse behavioral indicators [23], allowing to enhance the
prediction capabilities of the models. All these studies are
thus based on an ”individual” part of the mobile phone data.
For example, Felbo et al. and Sarraute et al. predict the
gender with respectively 79.7% and 77.1%3 accuracy, either
by harnessing their temporal information using deep learning
or by using linear SVM and logistic regression [5], [26]. Other
works tackle the gender prediction problem in a similar way
using different kinds of data sets, such as Twitter or LinkedIn
data, the first name of a person or even chat texts [31]–[33].
Closer to our work, Al Zamal et al. exploit the homophily
in a Twitter network to predict the users’ gender, age, and
political affiliation [2], by analyzing how the knowledge of
the data from some immediate friends of a given user can
improve the prediction quality. This question is studied in a
usual machine learning framework: feature vectors are defined
for each user, either augmented with data from her neighbors
or not. Considering the neighbors’ information in the feature

3But with only 25% coverage.

vectors allows to improve the accuracy from 3 to 5% for the
age and political affiliation prediction, whereas including the
immediate neighbors’ features does not improve the gender
predictions.

Since the former approaches do not take the global network
structure into account, they could further benefit from its
assortativity. Fewer studies consequently consider the network
directly to predict demographics, either by assuming that
the labels of some individuals in the graph are known and
the remaining ones are missing [17] or by adopting a two-
step approach, first computing uncertain predictions using the
individual part of the data, in the same spirit as the former
researches, and then improving them using the network [5].
Dong et al. introduce a double dependent-variable factor graph
model in order to jointly predict the users’ age and gender
by taking profit of the links between these two demographic
attributes in a network [17]. Knowing 50% of the labels, the
remaining unknown genders are predicted with up to 80%
accuracy. However, as they do not quantify the assortativity
of their network, these performances are not easy to compare
to our study. Our results may nevertheless qualitatively explain
the success of their approach, at least partly. Combining age
and gender implicitly delineates in an automated manner some
rather (anti-)homophilic sub-graphs, as illustrated by their data
analysis. As highlighted by our work, this definition of strong
and weak network parts with accentuated (anti-)homophilies
improves the inference performances. The latter observation is
essential, as several studies mention that gender assortativity
is generally rather weak [2], [10] and thus not sufficient to
infer the gender. For instance, the reaction-diffusion algorithm
introduced by Sarraute et al. is used to infer the age group
of some users, but not their gender [5]. Their network indeed
bears a strong age homophily. When 70% of the known age
labels (a fraction of all the users) are propagated through the
network to infer the 30% remaining nodes, the age group
among four categories is predicted with 43.4% accuracy.

Compared to the two aforementioned studies, in addition
to exploiting the global network topology, our study makes use
of an objective measure of the assortativity to provide guaran-
tees about the performances generalization. This quantitative
measure of the network homophilies is typically not provided
by graphical representations. It allows us to describe to which
extent the sole network information improves individual demo-
graphics prediction, as a function of the assortativity. The pro-
posed methodology also easily permits to take profit of some
known labels, as well as first individual predictions performed
using individual data. Finally, the model can benefit from
assortativity variations in different sub-graphs, highlighted by
the edge weights. By modeling the statistical dependencies
between adjacent labels, it can favor heterogeneous as well as
homogeneous contacts (by opposition to so-called consistency
methods only favoring homogeneity [25], [34]).

V. CONCLUSION
This work shows how assortativity can be exploited to

improve individual demographics prediction in social net-
works. To this aim, a general approach is introduced, using a
probabilistic graphical model. The achieved performances are
studied on simulated networks as a function of the assortativity
and the quality of the initial predictions, both in terms of
accuracy and distribution. Indeed, the relevance of the network
information compared to individual features depends on (1) the



assortativity amplitude and (2) the quality of the prior individ-
ual predictions (poor prior information is misleading, while
excellent one does not leave much room for improvement).
The graph simulations allow to tune the model parameters.
Our method is further validated on a real-world mobile phone
network and the model is refined to predict gender, exploiting
both weak, homophilic and strong, anti-homophilic links. In
this particular case, the approach allows to improve individual-
based gender predictions by up to 3%.

The analysis performed on synthetic networks illustrates
that a strong assortativity can be easily exploited through our
methodology. Also, an almost randomly mixed network might
still be composed of several parts which are, if considered in
isolation, assortative and disassortative. Thus even in the latter
configuration, the network topology might still be useful. As a
further work, the generalization of the proposed methodology
to multivariate predictions would be of great interest. The
model could then benefit from the relationships between the
target variables, and automatically make use of sub-networks
presenting more pronounced homophilies.
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