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Abstract
Recent advances in emotion and affect recognition can play a crucial role in game technology. Moving from the typical game controls
to controls generated from free gestures is already in the market. Higher level controls, however, can also be motivated by player’s
affective and cognitive behavior itself, during gameplay. In this paper, we explore player’s behavior, as captured by computer vision
techniques, and player’s details regarding his own experience and profile. The objective of the current research is game adaptation
aiming at maximizing player enjoyment. To this aim, the ability to infer player engagement and frustration, along with the degree of
challenge imposed by the game is explored. The estimated levels of the induced metrics can feed an engine’s artificial intelligence,
allowing for game adaptation.
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1. Introduction
Playing computer games is an activity enjoyed by millions
of people worldwide, for thirty or even more years now.
Since the basic controls of interaction in the 80’s, a lot has
changed today, with one of the latest achievements of to-
day’s technology that of gesture recognition platforms. The
player can just interact with the game, in a completely non-
intrusive way, while his body itself plays the role of the
game controls. Within this view, the path to affective com-
puting (Picard, 1997) in game-playing has opened, showing
the way to using, not only one’s gestural movements as in-
put to game control, but his behavioral and affective state.
Human-Computer interaction (e.g. human-agent communi-
cation), within in this view, is beginning to take advantage
of systems consisting of sensors capturing affective and
physiological data (Picard, 1997; Castellano et al., 2009;
Kapoor et al., 2007). Player behavior towards particular
game events or during whole sessions of gameplay can be-
come a useful source of information for the game’s Arti-
ficial Intelligence (AI), so that it adapts itself to player’s
affective state. Within this frame, heart rate measurements,
respiration, pressure on the mouse, posture in a chair, blood
or brain oxygen levels have been shown to be valuable be-
havioral indicators used as inputs to the AI of a game, so
that player’s enjoyment is optimized.
In search for features correlated with the notion of engage-
ment, frustration and challenge in games, a lot of works
have been proposed in bibliography (van den Hoogen et
al., 2008; Sanghvi et al., 2011) using expressive body and
facial movements, as well as a multitude of sensorial cues
(Kapoor et al., 2007; Sykes and Brown, 2003) to inform an
immersive game environment about player’s actual cogni-
tive and affective state. Estimating moments of particular
behavioral cues (see Figure 1) using non intrusive means
can be a valuable source of information for the game expe-
rience: First, the player is not disrupted by intrusive mech-
anisms which might interfere with the whole experience.
Furthermore, cognitive and affective features can be trans-
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Figure 1: Players’ visual reactions towards certain events
taking place during gameplay

ferred automatically, not necessitating that the player inter-
rupts gameplay in order to report these data, nor that he has
to recall his perception on each separate gameplay experi-
ence. The advances on computer vision techniques under
non-pretending conditions have allowed the proposal of a
few techniques incorporating notions such as body move-
ments (Castellano et al., 2009; Sanghvi et al., 2011) head
motion and eye gaze (with eye gaze still necessitating spe-
cialized hardware (Jennett et al., 2008)).

In this paper, we address the issue of estimating those game
events that, in conjunction with specific player character-
istics and behavioral cues, could trigger specific affective
and/or cognitive states towards a gameplay session. Tak-
ing into account previous research (Castellano et al., 2009;
Sanghvi et al., 2011), players’ intensity of movement, mod-
elled, here, as movements of the head, was correlated to
specific events and player characteristics. More in particu-
lar, user reported levels of challenge (how challenging the
player would find a game he just finished, with regards to
his/her own experience and taste), frustration (how frustrat-
ing a game was found, usually due to large obstacles as,
most players, confessed) and engagement (how much play-
ers actually enjoyed a game they just finished playing) are
mapped to visual and personal features. The proposed re-
search is in line with Csikszentmihalyi’s flow theory (Csik-
szentmihalyi, 1997), i.e. game features that would charac-
terize a game as challenging are combined with player’s
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expressed arousal (during whole game sessions or when
specific events occur) and self reported skill level, in or-
der to infer engagement. Taking the above as input to a
clustering algorithm, the system attempts to define possible
moments of high engagement, frustration, and challenge,
in an attempt to work towards extending the model of Csik-
szentmihalyi, by correlating the notions of engagement and
frustration (apart from challenge) to experience models and
introducing demographic and visual behavior-related fea-
tures to profiling schemes. The results of the proposed sys-
tem are promising, in the sense that they could contribute
to the design of a self-adaptive game, aiming at maximising
the feeling of engagement during gameplay.
The structure of the paper is organized as follows: Sec-
tion 2. presents the game platform and the data acquisition
procedure, respectively, while Section 3. gives an analyt-
ical description and discussion on experiments conducted
under personalized and generalized protocols. Section 4.
concludes the paper.

2. Dataset Acquisition
The testbed platform game used for our study is a modified
version of Markus Perssons Infinite Mario Bros, which is
a public domain clone of Nintendo’s classic platform game
Super Mario Bros. The original Infinite Mario Bros and
its source code is available on the web 1. The gameplay in
Super Mario Bros consists of moving the player-controlled
character, Mario, through two dimensional levels. Mario
can walk, run, duck, jump, and shoot fireballs. The main
goal of each level is to get to the end of the level. Auxil-
iary goals include collecting as many coins as possible, and
clearing the level as fast as possible. While implementing
most features of Super Mario Bros, the stand out feature of
Infinite Mario Bros is the automatic generation of levels.
Every time a new game is started, levels are randomly gen-
erated. In our modified version, we concentrated on a few
selected parameters that affect gameplay experience.
Volunteer players in Greece and Denmark were asked to
play a series of different game sessions. Players were be-
tween 23 and 39 years old (average ' 29yrs), while con-
ditions were typical of those of an office environment (see
Figure 2). After each game, players were asked to assess
the degree of engagement, frustration and challenge asso-
ciated with the gameplay. The selection of these states
is based on earlier game survey studies (Pedersen et al.,
2010) and the intention to capture both affective and cogni-
tive/behavioral components of gameplay experience (Yan-
nakakis and Togelius, 2011). Furthermore, self-reporting
had to be kept as limited as possible, so that experience
disruption was minimized. The assessments were given
in the form of ratings from 0 to 4. The analysis pre-
sented in this paper is based on 36 players playing 240
games. A more analytical description of the experimen-
tal procedure and data collection protocol can be found in
(Shaker et al., 2011), while the full dataset is available at
http://sirenproject.eu. Players’ recorded video sequences
were analyzed using the methodology reported in (Aster-
iadis et al., 2009). This algorithm offers real-time estimates

1http://www.mojang.com/notch/mario/

of head rotation. In this paper, we used the first derivative
of head rotation vector (horizontal and vertical) norm, as an
indicate of head motion ”quantity”.

Figure 2: Typical example frame of the collected dataset.

While playing the game, different player and game-content
actions, as well as their corresponding time-stamps were
recorded. Player’s visual behavior was estimated in the fol-
lowing cases: Average head motion per game, Head mo-
tion when player loses, Head motion at stomping on an
enemy to kill him, Head motion when player is about to
make a critical move. Furthermore, profile characteristics
considered here were the following: Whether player is a
frequent gamer, How much time they spend playing games
on a weekly basis, Age, and Whether they had played Su-
per Mario before. Most players (30 out of 36) said that
they were at least a little familiar with Super Mario, while
25 players declared themselves as occasional or frequent
gamers. The above reports appear to be quite independent
of age, though.
The above parameters are used as inputs for predicting user
affective and cognitive state (engagement, frustration, chal-
lenge) experienced after each game session.

3. Experiments
3.1. Player independent training
For estimating user state (engagement, challenge, frustra-
tion), different combinations of the above features were
tried. Each player’s annotations were averaged on a per
game basis, normalized from 0 to 1 and further classified
to labels (challenged-not challenged, engaged-not engaged,
frustrated-not frustrated). Table 1 gives an overview of
F -measures and overall accuracies achieved for different
combinations of features, for all game sessions, following a
leave-one-player-out protocol, utilizing Fuzzy 3-NN clus-
tering (Keller et al., 1985). The features used for infer-
ring each state have been decided after a feature selection
method, so that estimation accuracy is maximized. Mean
Head Motion is the average head movement (expressed as
the first derivative of head rotation) throughout all sessions
for every person, while Mean Lose-Events Head Motion,
Mean Head Motion at killstomp (killing enemies by stomp-
ing them), Mean Head Motion at Move Start are the cor-
responding average values per person for a period of 10
frames before and after the corresponding events. Before
using the algorithm all data were normalized from 0 to 1.
Typical player reactions when losing can be seen in figure
3.
The above results indicate that visual motion behavior can
be a strong indicate for all three affective and cognitive
states. More specifically, average head motion appears to
be an indicate for distinguishing between challenging and
non-challenging games. Challenging interactions increase



Figure 3: Player visual behavior during gameplay. In this session, Super Mario was killed in seconds ' 32 and ' 100.

Table 1: F -measures and accuracy achieved for different combinations of behavioral features and player details. 1’s corre-
spond to feature used for estimating the behavioral state of the corresponding column, and 0’s mean that the corresponding
feature has not been used.

Challenge Frustration Engagement

Mean Head Motion per Session 1 0 0

Mean Lose-Events Head Motion 0 1 0

Mean Head Motion at Killstomp 1 1 1

Mean Head Motion at Move Start 1 1 0

Played Before 1 0 0

Time of playing per week 0 0 1

Playing Games 0 1 1

Age 0 1 1

F-measure / Accuracy 0.73/69% 0.71/74% 0.70/71%

the levels of arousal (Gross and Levenson, 1993) and the
player externalizes this experience by high levels of overall
motion. Head Expressivity when a critical move is about to
take place appeared to be low when players felt challenged
by the game, probably due to the fact that they were try-
ing to concentrate on the critical move. This characteristic
would be mainly associated with games provoking high lev-
els of challenge, which usually implies that the player felt
at risk of losing and momentary increased levels of concen-
tration were vital. On the contrary, frustrating games would
mainly be associated with high motion expressivity at the
start of critical moves. High expressivity when stomping
to kill an enemy appears to be positively correlated with
high levels of challenge and frustration, although engaging
games showed the contrary.

Having prior experience in Super Mario also appears to
play a role for the cases of frustration and engagement. Our
results indicate that general gamers would, more frequently,
declare that no engagement or frustration was experienced,
and that may be attributed, probably, to their game habits.
Similar is the case for younger players, probably due to
their exposure to different kinds of games (see Fig. 4).
However, those players declaring that they had never played
Super Mario before had more chances of saying that they
felt challenged by the game, than the experienced ones.
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Figure 4: Box plot of medians with comparison intervals of
frustration levels as function of age.

3.2. Player dependent training

Estimating player state based on his or her own behavioral
characteristics is of primary importance for game adapta-
tion. Different players pose different expressions, motion
patterns and expressivity characteristics when reacting to
the same stimuli. This idea triggers experimentation on
building on individual profiles with aim at a personalized,
profile-aware game, capable of discriminating between in-
dividual behavioral and affective cues. We used a subset of
the players of the dataset described above, so that each of
them played at least 8 games. We tested for each gameplay
of each player, separately, using as knowledge-base only



data from his own games, and we considered as input, be-
havioral cues from head expressivity. It was noticed that
classifying between games provoking high and low levels
of engagement gave the best results (F -measure=0.61, ac-
curacy=82%).

4. Discussion and Conclusions
This paper has explored the possibility of using visual be-
havior during certain game events, as well as player’s pro-
file information, as predicates of behavioral, cognitive and
emotional states. Our preliminary results show that sub-
sets of features can be utilized during gameplay, in order to
elicit hidden information regarding user state and, thus, use
it for game adaptation. Experimentation on a personalized
level reveals that there is also potential for individualized
game adaptation. However, these experiments need to be
further expanded with more data, in order to be able to gen-
eralize across a much richer set of subjects. Moreover, ide-
ally, the number of men and women in the dataset should
be balanced (in this paper, out of 36 participants, only 8
of them were women). Furthermore, parameters related to
game difficulty should also be taken into account in con-
junction with visual and profile characteristics, as a metric
for game challenge. It is also worth to point out that the
moderate prediction accuracies obtained can be most likely
due to the limitations of the rating reporting scheme con-
sidered in this paper. Self-reported ratings are affected by
a number of effects including culture, personality and sev-
eral types of scaling biases. Moreover, recent findings sug-
gest that rating reporting schemes yield higher order and
inconsistency effects when compared to ranking reporting
schemes (such as pairwise preferences) (Yannakakis and
Hallam, 2011). Future work will, therefore, focus on pre-
dicting ranking self-reports of the players — which are ex-
istent in the dataset but not used in this study — via the use
of preference learning (Shaker et al., 2010).
Future research will focus on evaluating a closed-loop sys-
tem, i.e., perform game adaptation based on the inferred
player state during gameplay, in order to explore the prac-
tical usability of the above findings for minimizing frustra-
tion and maximizing player engagement. Special focus will
also be placed on analyzing cultural and gender differences,
as components of player’s personal profile.
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