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Abstract
We discuss the problem of music content analysis
within the formal framework of experimental design.

1. Preliminaries
By the formalism developed in Sturm et al. (2014), define a
music universe Ω, a music recording universeRΩ, descrip-
tor vocabularies F (features) and V (tokens), and Boolean
semantic rules A′ : f → {T, F} and A : s → {T, F},
where f and s are finite sequences of elements in F and V ,
respectively. Define the semantic universe

SV,A := {s ∈ Vn|n ∈ N ∧A(s) = T}. (1)

The semantic feature universe SF,A′ is built similarly, using
F and A′. A recorded music description system S is a map

S : RΩ → SV,A (2)

which is a composition of two maps: E : RΩ → SF,A′

and C : SF,A′ → SV,A. The map E is commonly known
as a “feature extractor,” and C as a “classifier.” A recorded
music dataset is an indexed sample

D = ((ri, si) : i ∈ I) ⊂ RΩ × SV,A (3)

where I indexes the samples. The sequence (si)i∈I is
called the ground truth of D. Finally, music content analy-
sis research encompasses all aspects above in order to con-
nect “users” (people, organisations, etc.) with music and
information about music.
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2. Experimental design in general
Experimental design (Bailey, 2008) is necessary to plan,
implement, analyse, and report valid tests of hypotheses
while meeting constraints that are physical, economical,
ethical, and so on. Fundamental concerns of experimen-
tal design are the specification of the treatments, the exper-
imental and observational units (plots), the identification
of structures in treatments and plots, the mapping of units
to treatments, the relevance of the measurement, the mod-
elling and analysis of measurements, and securing that an
experiment can validly address given hypotheses.

An experimental design maps plots {ω1, . . . , ωN} to treat-
ments T = {1, . . . , t}, as represented by a design matrix
X := [u1, · · · , ut]N×t, of N × 1 indicator vectors ui,
where the jth row of ui is 1 if plot ωj receives treatment
i, and 0 if not. Of interest are two subspaces: the treat-
ment subspace VT := C(X), which is the column space of
X, and its orthogonal complement V ⊥T , which contains all
N × 1 vectors orthogonal to X. Structure in the treatments
and/or plots may prompt other decompositions of the space
V = RN in order to test specific hypotheses.

An experiment results in measurements on treated units,
producingN responses y ∈ V . The effect of the treatments
on y is often described by a linear model

Y = τ + Z (4)

where τ =
∑
τiui ∈ VT and τ1, . . . , τt are the treatment

parameters (unknown constants). Moreover, Z is a random
vector which can be modelled further to reflect structure
in the plots and random error. Testing hypotheses about
{τi} relies upon assumptions about Z. The simple textbook
model for unstructured plots and a completely randomised
design assumes that Z ∼ N (0, σ2IN ). Structure in the
plots necessitates the use of a different model for Z. Hy-
pothesis testing by the method of analysis of variance de-
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composes y over orthogonal subspaces of V , such as VT
and V ⊥T , in accordance with the hypotheses and the plot
structure, and then assesses their contributions.

3. Experimental design for MCA systems
Of principal interest is a comparison of music content anal-
ysis (MCA) systems {S1, S2, . . .}, as in (2), which are the
treatments T . A common experiment toward this proceeds:

1. Build or choose a D, indexed by I
2. Partition I into non-overlapping sets Itrain, Itest

3. Build {S1, S2, . . .} from tuples of D indexed by Itrain

4. Treat recordings of D indexed by Itest and compare results
to ground truth, i.e., record successes and failures.

This is often done using K-fold cross validation (KfCV),
or repeated random partitioning, in which case steps 2-4
are repeated. To summarise the results of this experiment,
a figure of merit (FoM) is computed, e.g., accuracy, which
is then used to make comparisons between treatments.

This process is typified by the experiment of Tzanetakis
& Cook (2002), which is one of the most cited articles in
MCA. They use a D with 1000 recordings and a ground
truth with 100 occurrences of each of the 10 elements
(genre) in SV,A. They perform the experiment above with
several systems using the same instance of E but different
classifiers built from different methods. For each kind of
system Sk, they perform 100 repetitions of 10fCV in D.
Each repetition uses a fresh random partition of the 100
recordings per genre in D into 10 mutually exclusive sub-
sets A(j)

1 , . . . , A
(j)
10 of size 10, where j = 1, . . . , 10 iden-

tifies the genre. For i = 1, . . . , 10 the ith fold is then de-
fined as the set-theoretic union of A(1)

i , . . . , A
(10)
i . Each

10fCV uses for each i ∈ {1, . . . , 10} the ith fold as Itest

and the union of the remaining nine folds as Itrain. For
each (ri, si) ∈ D with i ∈ Itest the response is 1 if the sys-
tem output matches the ground truth, that is if Sk(ri) = si,
and 0 otherwise. This gives 1000 responses per repetition
and a corresponding proportion of matches. Tzanetakis and
Cook compute the mean rate of success (accuracy) and the
standard deviation of those proportions over the 100 repe-
titions. The table below shows some of their results.

Classifier FoM (accuracy)
Kind (mean± std. dev.)
GS 0.59± 0.04

GMM(3) 0.61± 0.04
KNN(3) 0.60± 0.04

Three conclusions they make from their experiment are:
A. Since D is a “representative” sample fromRΩ × SV,A, the

FoM (based on D) of GS, GMM(3) and KNN(3) in Table 3
are “indicative” of the FoM that would be obtained if these
kinds of systems were applied to the entire universeRΩ.

B. Since the FoM of GS, GMM(3) and KNN(3) using the pro-
posed E are better than randomly mapping RΩ to SV,A (in
which case the FoM is expected to be 0.10), the set SF,A′ is
informative for SV,A in the whole universeRΩ.

C. Since the FoM in Table 3 are better than randomly mapping
RΩ to SV,A, the systems are recognising SV,A inRΩ.

The validity of each of these conclusions relies on two
strong assumptions. Conclusion A assumes that D is a ran-
dom sample from RΩ × SV,A, a set that is never explic-
itly defined. Since there is clear evidence that D is not a
random sample (Sturm, 2014), the experiment may or may
not result in FoM that reflect the performance of a system
applied to RΩ. The other two conclusions relate to the be-
haviour expected of a system operating randomly, and as-
sume that an MCA system’s ability to reproduce the ground
truth of D is either due to chance or caused by “musical
content” relating RΩ to SV,A. This assumption is not true:
another way to reproduce the ground truth of D is by ex-
ploiting “non-musical content” (characteristics of subsets
of RΩ unrelated to SV,A), e.g., a confounding introduced
by the construction of D. The existence of such confound-
ing in the dataset used in Tzanetakis & Cook (2002), as
well as others, has been clearly demonstrated (Pampalk
et al., 2005; Sturm, 2014). Because of its lack of control
over such a possibility, the experiment above has no valid-
ity for conclusions B and C.

A possible measurement model for the experiment in line
with Bailey (2008) would recognise the individual cross
validations as the observational units and “repetitions” as
an additional plot factor. A system of each kind k is ap-
plied as a treatment to 100 whole repetitions (each consist-
ing of 10 units). The response for each unit u is the propor-
tion of correct classifications of the 100 pairs (ri, si) with
i ∈ Itest(u, v), where Itest(u, v) denotes the test set for the
validation u in repetition v. Denote by pkuv the probability
that a system of type k gives a correct classification for u
and v. A model for this situation is

pkuv = β0 + βk + γv + εuv, (5)

where, using an appropriate parameterisation, β0 is the
probability of success of a random system and βk is the ad-
ditional contribution of the system to type k. Further, γv is
a contribution due to the random partitioning in repetition
v, and εuv models all other “errors” independent of the sys-
tem type due to cross validation instances u within v. For
this interpretation of β0 and βk to be valid, the experiment
would also need to include a random system.

To provide evidence for the conclusions B and C of Tzane-
takis & Cook (2002) one would need to test the hypothesis
βk = 0 in (5). This test would then be performed in the
stratum for repetitions. For three kinds of systems, as in the
table above, and an additional random system (each with
100 repetitions and 10 validations) and assuming normal-
ity, the corresponding F test has 396 denominator degrees
of freedom. Assuming all individual cross validations are
independent can result in an incorrect test overstating the
significance of the results. The applicability of this is sus-
pect, however, since γv is known to depend on the system
type (Pampalk et al., 2005; Sturm, 2014).
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