542 research outputs found

    In-flight calibration of STEREO-B/WAVES antenna system

    Full text link
    The STEREO/WAVES (SWAVES) experiment on board the two STEREO spacecraft (Solar Terrestrial Relations Observatory) launched on 25 October 2006 is dedicated to the measurement of the radio spectrum at frequencies between a few kilohertz and 16 MHz. The SWAVES antenna system consists of 6 m long orthogonal monopoles designed to measure the electric component of the radio waves. With this configuration direction finding of radio sources and polarimetry (analysis of the polarization state) of incident radio waves is possible. For the evaluation of the SWAVES data the receiving properties of the antennas, distorted by the radiation coupling with the spacecraft body and other onboard devices, have to be known accurately. In the present context, these properties are described by the antenna effective length vectors. We present the results of an in-flight calibration of the SWAVES antennas using the observations of the nonthermal terrestrial auroral kilometric radiation (AKR) during STEREO roll maneuvers in an early stage of the mission. A least squares method combined with a genetic algorithm was applied to find the effective length vectors of the STEREO Behind (STEREO-B)/WAVES antennas in a quasi-static frequency range (LantennaλwaveL_{antenna} \ll \lambda_{wave}) which fit best to the model and observed AKR intensity profiles. The obtained results confirm the former SWAVES antenna analysis by rheometry and numerical simulations. A final set of antenna parameters is recommended as a basis for evaluations of the SWAVES data

    Safety and Security Co-engineering and Argumentation Framework

    Get PDF
    Automotive systems become increasingly complex due to their functional range and data exchange with the outside world. Until now, functional safety of such safety-critical electrical/electronic systems has been covered successfully. However, the data exchange requires interconnection across trusted boundaries of the vehicle. This leads to security issues like hacking and malicious attacks against interfaces, which could bring up new types of safety issues. Before mass-production of automotive systems, arguments supported by evidences are required regarding safety and security. Product engineering must be compliant to specific standards and must support arguments that the system is free of unreasonable risks. This paper shows a safety and security co-engineering framework, which covers standard compliant process derivation and management, and supports product specific safety and security co-analysis. Furthermore, we investigate process- and product-related argumentation and apply the approach to an automotive use case regarding safety and security.This work is supported by the projects EMC2 and AMASS. Research leading to these results has received funding from the EU ARTEMIS Joint Undertaking under grant agreement no. 621429 (project EMC2), project AMASS (H2020-ECSEL no 692474; Spain’s MINECO ref. PCIN-2015-262) and from the COMET K2 - Competence Centres for Excellent Technologies Programme of the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry of Science, Research and Economy (bmwfw), the Austrian Research Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG)

    COMBINATION OF THERMAL INFRARED IMAGES AND LASERSCANNING DATA FOR 3D THERMAL POINT CLOUD GENERATION ON BUILDINGS AND TREES

    Get PDF
    The thermal infrared study of urban environments is of growing interest. It allows to observe the variations of surface temperatures on objects over time and therefore the microclimate at the scale of a street. To facilitate the analysis of thermal interactions between urban elements, it is necessary to provide a 3D visualization of the thermography of a street. For this purpose, 3D thermal models combining geometric and thermal infrared (TIR) measurements are required. The chosen format for 3D thermal models is a point cloud with a temperature attribute. In our approach, two types of urban components are considered: buildings and trees. The geometric data of each component are acquired with a static laser scanner and the surface temperature is acquired with a thermal handheld camera. For the building, the approach consists in georeferencing TIR images and colorize the point cloud by projection. For trees, the approach consists of the colorization of each laser scan prior to the registration. The spherical panoramic images acquired with the Terrestrial Laser Scanning (TLS) are used as references to automatically georeferenced the TIR and thus to save time. The 3D thermal models obtained highlight the impact of sunlight on buildings and trees. At building scale, this thermal representation also helps to emphasize thermal bridges, as well as the shadow generated by surrounding trees. At tree scale, this representation is useful for monitoring the temporal and spatial variability of trunk’s and leave’s temperatures. Obviously, the thermal models underline the impact of trees on the urban environment

    Leukocyte migration in experimental inflammatory bowel disease

    Get PDF
    Emigration of leukocytes from the circulation into tissue by transendothelial migration, is mediated subsequently by adhesion molecules such as selectins, chemokines and integrins. This multistep paradigm, with multiple molecular choices at each step, provides a diversity in signals. The influx of neutrophils, monocytes and lymphocytes into inflamed tissue is important in the pathogenesis of chronic inflammatory bowel disease. The importance of each of these groups of adhesion molecules in chronic inflammatory bowel disease, either in human disease or in animal models, will be discussed below. Furthermore, the possibilities of blocking these different steps in the process of leukocyte extravasation in an attempt to prevent further tissue damage, will be taken into account

    Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    Get PDF
    Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings

    On Horava-Lifshitz "Black Holes"

    Full text link
    The most general spherically symmetric solution with zero shift is found in the non-projectable Horava-Lifshitz class of theories with general coupling constants. It contains as special cases, spherically symmetric solutions found by other authors earlier. It is found that the generic solution has conventional (AdS, dS or flat) asymptotics with a universal 1/r tail. There are several special cases where the asymptotics differ, including the detailed balance choice of couplings. The conventional thermodynamics of this general class of solutions is established by calculating the energy, temperature and entropy. Although several of the solutions have conventional horizons, for particles with ultra-luminal dispersion relations such solutions appear to be horizonless.Comment: Latex 41 pages, 5 figure

    Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins

    Get PDF
    Chinese hamster ovary (CHO) cells are widely used for the manufacture of biotherapeutics, in part because of their ability to produce proteins with desirable properties, including 'human-like' glycosylation profiles. For biotherapeutics production, control of glycosylation is critical because it has a profound effect on protein function, including half-life and efficacy. Additionally, specific glycan structures may adversely affect their safety profile. For example, the terminal galactose-α-1,3-galactose (α-Gal) antigen can react with circulating anti α-Gal antibodies present in most individuals. It is now understood that murine cell lines, such as SP2 or NSO, typical manufacturing cell lines for biotherapeutics, contain the necessary biosynthetic machinery to produce proteins containing α-Gal epitopes. Furthermore, the majority of adverse clinical events associated with an induced IgE-mediated anaphylaxis response in patients treated with the commercial antibody Erbitux (cetuximab) manufactured in a murine myeloma cell line have been attributed to the presence of the α-Gal moiety. Even so, it is generally accepted that CHO cells lack the biosynthetic machinery to synthesize glycoproteins with α-Gal antigens. Contrary to this assumption, we report here the identification of the CHO ortholog of N-acetyllactosaminide 3-α-galactosyltransferase-1, which is responsible for the synthesis of the α-Gal epitope. We find that the enzyme product of this CHO gene is active and that glycosylated protein products produced in CHO contain the signature α-Gal antigen because of the action of this enzyme. Furthermore, characterizing the commercial therapeutic protein abatacept (Orencia) manufactured in CHO cell lines, we also identified the presence of α-Gal. Finally, we find that the presence of the α-Gal epitope likely arises during clonal selection because different subclonal populations from the same parental cell line differ in their expression of this gene. Although the specific levels of α-Gal required to trigger anaphylaxis reactions are not known and are likely product specific, the fact that humans contain high levels of circulating anti-α-Gal antibodies suggests that minimizing (or at least controlling) the levels of these epitopes during biotherapeutics development may be beneficial to patients. Furthermore, the approaches described here to monitor α-Gal levels may prove useful in industry for the surveillance and control of α-Gal levels during protein manufacture.National Center for Research Resources (U.S.) (Grant P41 RR018501-01

    The host ubiquitin-dependent segregase VCP/p97 is required for the onset of human cytomegalovirus replication

    Get PDF
    The human cytomegalovirus major immediate early proteins IE1 and IE2 are critical drivers of virus replication and are considered pivotal in determining the balance between productive and latent infection. IE1 and IE2 are derived from the same primary transcript by alternative splicing and regulation of their expression likely involves a complex interplay between cellular and viral factors. Here we show that knockdown of the host ubiquitin-dependent segregase VCP/p97, results in loss of IE2 expression, subsequent suppression of early and late gene expression and, ultimately, failure in virus replication. RNAseq analysis showed increased levels of IE1 splicing, with a corresponding decrease in IE2 splicing following VCP knockdown. Global analysis of viral transcription showed the expression of a subset of viral genes is not reduced despite the loss of IE2 expression, including UL112/113. Furthermore, Immunofluorescence studies demonstrated that VCP strongly colocalised with the viral replication compartments in the nucleus. Finally, we show that NMS-873, a small molecule inhibitor of VCP, is a potent HCMV antiviral with potential as a novel host targeting therapeutic for HCMV infection
    corecore