334 research outputs found

    The simplest amino‐borane H2B=NH2 trapped on a rhodium dimer : pre‐catalysts for amine–borane dehydropolymerization

    Get PDF
    Funding: The EPSRC (A.S.W. and S.A.M., EP/M024210/1; N.A.B., DTP Studentship), the Rhodes Trust (A.K.), G. M. Adams (G. P. C. analysis).The μ‐amino–borane complexes [Rh2(LR)2(μ‐H)(μ‐H2B=NHR′)][BArF4] (LR=R2P(CH2)3PR2; R=Ph, iPr; R′=H, Me) form by addition of H3B⋅NMeR′H2 to [Rh(LR)(η6‐C6H5F)][BArF4]. DFT calculations demonstrate that the amino–borane interacts with the Rh centers through strong Rh‐H and Rh‐B interactions. Mechanistic investigations show that these dimers can form by a boronium‐mediated route, and are pre‐catalysts for amine‐borane dehydropolymerization, suggesting a possible role for bimetallic motifs in catalysisPublisher PDFPeer reviewe

    A Neutral Heteroatomic Zintl Cluster for the Catalytic Hydrogenation of Cyclic Alkenes

    Get PDF
    We report on the synthesis of an alkane-soluble Zintl cluster, [η4-Ge9(Hyp)3]Rh(COD), that can catalytically hydrogenate cyclic alkenes such as 1,5-cyclooctadiene and cis-cyclooctene. This is the first example of a well-defined Zintl-cluster-based homogeneous catalyst

    Solid-state synthesis and characterization of σ-alkane complexes, [Rh(L2)(η2,η2-C7H12)][BArF4] (L2 = bidentate chelating phosphine)

    Get PDF
    The use of solid/gas and single-crystal to single-crystal synthetic routes is reported for the synthesis and characterization of a number of σ-alkane complexes: [Rh(R2P(CH2)nPR2)(η2,η2-C7H12)][BArF4]; R = Cy, n = 2; R = iPr, n = 2,3; Ar = 3,5-C6H3(CF3)2. These norbornane adducts are formed by simple hydrogenation of the corresponding norbornadiene precursor in the solid state. For R = Cy (n = 2), the resulting complex is remarkably stable (months at 298 K), allowing for full characterization using single-crystal X-ray diffraction. The solid-state structure shows no disorder, and the structural metrics can be accurately determined, while the 1H chemical shifts of the Rh···H–C motif can be determined using solid-state NMR spectroscopy. DFT calculations show that the bonding between the metal fragment and the alkane can be best characterized as a three-center, two-electron interaction, of which σCH → Rh donation is the major component. The other alkane complexes exhibit solid-state 31P NMR data consistent with their formation, but they are now much less persistent at 298 K and ultimately give the corresponding zwitterions in which [BArF4]− coordinates and NBA is lost. The solid-state structures, as determined by X-ray crystallography, for all these [BArF4]− adducts are reported. DFT calculations suggest that the molecular zwitterions within these structures are all significantly more stable than their corresponding σ-alkane cations, suggesting that the solid-state motif has a strong influence on their observed relative stabilities

    Formation of a σ-alkane complex and a molecular rearrangement in the solid-State : [Rh(Cyp2PCH2CH2PCyp2)(η2:η2-C7H12)][BArF 4]

    Get PDF
    Addition of H2 to the precursor [Rh(Cyp2PCH2CH2PCyp2)(η2:η2- C7H8)][BArF 4] gives the σ-alkane complex [Rh(Cyp2PCH2CH2PCyp2)(η2:η2- C7H12)][BArF 4] by a single-crystal to single-crystal reaction, as characterized by Xray crystallography, SSNMR spectroscopy, and periodic DFT. An unexpected rearrangement of the {Rh(L2)}+ fragment is revealed

    A Structurally Characterized Cobalt(I) σ-Alkane Complex

    Get PDF
    The synthesis, and x-ray structure, of a cobalt s -alkane complex, [Co(Cy 2 P(CH 2 ) 4 PCy 2 )( norbornane )][BAr F 4 ], is achieved by a single-crystal to single-crystal solid/gas hydrogenation from a norbornadiene precursor. Magnetic data show this complex to be a triplet. Periodic DFT and electronic structure analyses identify weak C-H ··· Co σ -interactions, augmented by dispersive stabilisation between the alkane ligand and the anion-microenvironment. The calculations are most consistent with a η 1 : η 1 -alkane binding mode

    Solid/Gas In Crystallo Reactivity of an Ir(I) Methylidene Complex

    Get PDF
    In crystallo stabilization of known, but solution unstable, methylidene complex [Ir(tBu-PONOP)(═CH2)][BArF4] allows single-crystal to single-crystal solid/gas reactivity associated with the {Ir═CH2} group to be studied. Addition of H2 results in [Ir(tBu-PONOP)(H)2][BArF4]; exposure to CO forms iridium(I) carbonyl [Ir(tBu-PONOP)(CO)][BArF4], and reaction with NH3 gas results in the formation of methylamine complex [(tBu-PONOP)Ir(NH2Me)][BArF4] via an aminocarbene intermediate. Periodic density functional theory and electronic structure analyses confirm the Ir═CH2 bond character but with a very low barrier to rotation around the Ir═CH2 bond. Calculations show that addition of NH3 to the electrophilic alkylidene carbon gives an initial ammonium ylid intermediate. Stepwise N–H and C–H transfers then form the aminocarbene intermediate as a kinetic product from which two successive C–H couplings lead to the more stable methylamine product

    Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates

    Get PDF
    Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] (NBA = norbornane; ArF = 3,5-(CF3)2C6H3) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy2PCH2CH2PCy2)(alkene)x][BArF4] are formed. The ethene (x = 2) complex, [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4]-Oct, has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4]-Hex, that has a hexagonal microporous structure (P6322). The propene complex (x = 1) [Rh(Cy2PCH2CH2PCy2)(propene)][BArF4] is characterized as having a π-bound alkene with a supporting γ-agostic Rh⋯H3C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d3-propene, H2CCHCD3, using [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] scrambles the D-label into all possible positions of the propene, as shown by isotopic perturbation of equilibrium measurements for the agostic interaction. Periodic DFT calculations show a low barrier to H/D exchange (10.9 kcal mol-1, PBE-D3 level), and GIPAW chemical shift calculations guide the assignment of the experimental data. When synthesized using solution routes a bis-propene complex, [Rh(Cy2PCH2CH2PCy2)(propene)2][BArF4], is formed. [Rh(Cy2PCH2CH2PCy2)(butene)][BArF4] (x = 1) is characterized as having 2-butene bound as the cis-isomer and a single Rh⋯H3C agostic interaction. In the solid-state two low-energy fluxional processes are proposed. The first is a simple libration of the 2-butene that exchanges the agostic interaction, and the second is a butene isomerization process that proceeds via an allyl-hydride intermediate with a low computed barrier of 14.5 kcal mol-1. [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] and the polymorphs of [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4] are shown to be effective in solid-state molecular organometallic catalysis (SMOM-Cat) for the isomerization of 1-butene to a mixture of cis- and trans-2-butene at 298 K and 1 atm, and studies suggest that catalysis is likely dominated by surface-active species. [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] is also shown to catalyze the transfer dehydrogenation of butane to 2-butene at 298 K using ethene as the sacrificial acceptor

    Room Temperature Acceptorless Alkane Dehydrogenation from Molecular σ-Alkane Complexes

    Get PDF
    The non-oxidative catalytic dehydrogenation of light alkanes via C-H activation is a highly endothermic process that generally requires high temperatures and/or a sacrificial hydrogen acceptor to overcome unfavorable thermodynamics. This is complicated by alkanes being such poor ligands, meaning that binding at metal centers prior to C-H activation is disfavored. We demonstrate that by biasing the pre-equilibrium of alkane binding, by using solid-state molecular organometallic chemistry (SMOM-chem), well-defined isobutane and cyclohexane σ-complexes, [Rh(Cy2PCH2CH2PCy2)(η: η-(H3C)CH(CH3)2][BArF4] and [Rh(Cy2PCH2CH2PCy2)(η: η-C6H12)][BArF4] can be prepared by simple hydrogenation in a solid/gas single-crystal to single-crystal transformation of precursor alkene complexes. Solid-gas H/D exchange with D2 occurs at all C-H bonds in both alkane complexes, pointing to a variety of low energy fluxional processes that occur for the bound alkane ligands in the solid-state. These are probed by variable temperature solid-state nuclear magnetic resonance experiments and periodic density functional theory (DFT) calculations. These alkane σ-complexes undergo spontaneous acceptorless dehydrogenation at 298 K to reform the corresponding isobutene and cyclohexadiene complexes, by simple application of vacuum or Ar-flow to remove H2. These processes can be followed temporally, and modeled using classical chemical, or Johnson-Mehl-Avrami-Kologoromov, kinetics. When per-deuteration is coupled with dehydrogenation of cyclohexane to cyclohexadiene, this allows for two successive KIEs to be determined [kH/kD = 3.6(5) and 10.8(6)], showing that the rate-determining steps involve C-H activation. Periodic DFT calculations predict overall barriers of 20.6 and 24.4 kcal/mol for the two dehydrogenation steps, in good agreement with the values determined experimentally. The calculations also identify significant C-H bond elongation in both rate-limiting transition states and suggest that the large kH/kD for the second dehydrogenation results from a pre-equilibrium involving C-H oxidative cleavage and a subsequent rate-limiting β-H transfer step

    Single-crystal to cingle-crystal addition of H2to [Ir(iPr-PONOP)(propene)][BArF4] and comparison between solid-state and solution reactivity

    Get PDF
    The EPSRC (EP/M024210/2, EP/T019867/1), SCG Chemicals, The Clarendon Trust, The Leverhulme Trust (RPG-2020-184), Diamond Light Source for funding (PhD studentship to AM).The reactivity of the Ir(I) PONOP pincer complex [Ir(iPr-PONOP)(η2-propene)][BArF4], 6, [iPr-PONOP = 2,6-(iPr2PO)2C6H3N, ArF= 3,5-(CF3)2C6H3] was studied in solution and the solid state, both experimentally, using molecular density functional theory (DFT) and periodic-DFT computational methods, as well as in situ single-crystal to single-crystal (SC-SC) techniques. Complex 6 is synthesized in solution from sequential addition of H2and propene, and then the application of vacuum, to [Ir(iPr-PONOP)(η2-COD)][BArF4], 1, a reaction manifold that proceeds via the Ir(III) dihydrogen/dihydride complex [Ir(iPr-PONOP)(H2)H2][BArF4], 2, and the Ir(III) dihydride propene complex [Ir(iPr-PONOP)(η2-propene)H2][BArF4], 7, respectively. In solution (CD2Cl2) 6 undergoes rapid reaction with H2to form dihydride 7 and then a slow (3 d) onward reaction to give dihydrogen/dihydride 2 and propane. DFT calculations on the molecular cation in solution support this slow, but productive, reaction, with a calculated barrier to rate-limiting propene migratory insertion of 24.8 kcal/mol. In the solid state single-crystals of 6 also form complex 7 on addition of H2in an SC-SC reaction, but unlike in solution the onward reaction (i.e., insertion) does not occur, as confirmed by labeling studies using D2. The solid-state structure of 7 reveals that, on addition of H2to 6, the PONOP ligand moves by 90° within a cavity of [BArF4]-anions rather than the alkene moving. Periodic DFT calculations support the higher barrier to insertion in the solid state (ΔG‡= 26.0 kcal/mol), demonstrating that the single-crystal environment gates onward reactivity compared to solution. H2addition to 6 to form 7 is reversible in both solution and the solid state, but in the latter crystallinity is lost. A rare example of a sigma amine-borane pincer complex, [Ir(iPr-PONOP)H2(η1-H3B·NMe3)][BArF4], 5, is also reported as part of these studies.Peer reviewe
    corecore