1,289 research outputs found

    Experimental constraints on pre-eruption conditions of pantelleritic magmas: Evidence from the Eburru complex, Kenya Rift

    No full text
    The phase relationships and compositions of a pantellerite from the Eburru complex in the Kenya Rift Valley have been determined at 150 MPa and under reducing conditions, 2 log units below the Ni–NiO solid buffer. The effects of temperature and melt water content on phase relationships have been explored. Alkali feldspar and quartz crystallise alone at temperatures above 700 °C, irrespective of melt water content. Below 700 °C, sodic amphibole and clinopyroxene also crystallise; the amphibole being the liquidus phase under water-rich conditions. The coexistence of amphibole phenocrysts with alkali feldspar and quartz in a crystal-poor pantellerite implies temperatures below 700 °C and melt water contents higher than 4 wt.%, possibly up to 5–6 wt.%. Pantellerites have lower liquidus temperatures than associated comendites, which supports a parent–daughter relationship between the two magma types. The melts produced in the experiments extend the compositional trend displayed by the natural rock series, and reproduce some extreme compositions occasionally observed in alkaline volcanic series, with FeO⁎ contents above 12 wt.% and Na2O contents approaching 10 wt.%. Pantellerites are therefore the true near-minimum melt compositions of alkaline oversaturated magma series

    Fluorite stability in silicic magmas.

    No full text
    Recent experimental evidence is used to assess the conditions under which fluorite forms an early crystallising phase in silicic magmas. Fluorite solubility primarily depends on the (Na + K)/Al balance in the coexisting silicic melt, reaching a minimum in metaluminous melts. It can display reaction relationships with topaz and titanite, depending on changes in melt composition during crystallisation. An empirical model of fluorite stability in Ca-poor peralkaline rhyolite melts is derived and applied to selected rocks: Fmelt(wt%)=[(Na+K/Al){2.1110−3T(∘C)+1.5778}]−2.789 {\text{F}}_{{{\text{melt}}}} {\left( {{\text{wt}}\% } \right)} = {\left[ {{\left( {{\text{Na}} + {\text{K}}/{\text{Al}}} \right)}{\left\{ {2.1110^{{ - 3}} {\text{T}}{\left( {^\circ C} \right)} + 1.5778} \right\}}} \right]} - 2.789 At the F contents preserved in most silicic rocks, fluorite should normally appear late in the crystallisation sequence, in agreement with petrographic observations. During fluid-absent crustal anatexis, fluorite should melt at a relatively early stage and restitic fluorite is unlikely to persist during prolonged melting. Fluorite may, however, exert a decisive control on the alkali/alumina balance of sub-aluminous anatectic melts and it can affect the liquid line of descent of silicic magmas once extracted from source

    Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc

    No full text
    International audienceNear-liquidus crystallization experiments have been carried out on two basalts (12.5 and 7.8 wt% MgO) from Soufriere, St Vincent (Lesser Antilles arc) to document the early stages of differentiation in calc-alkaline magmas. The water-undersaturated experiments were performed mostly at 4 kbar, with 1.6 to 7.7 wt% H2O in the melt, and under oxidizing conditions (ΔNNO = −0.8 to +2.4). A few 10 kbar experiments were also performed. Early differentiation of primitive, hydrous, high-magnesia basalts (HMB) is controlled by ol + cpx + sp fractionation. Residual melts of typical high-alumina basalt (HAB) composition are obtained after 30–40% crystallization. The role of H2O in depressing plagioclase crystallization leads to a direct relation between the Al2O3 content of the residual melt and its H2O concentration, calibrated as a geohygrometer. The most primitive phenocryst assemblage in the Soufriere suite (Fo89.6 olivine, Mg-, Al- and Ti-rich clinopyroxene, Cr–Al spinel) crystallized from near-primary (Mg# = 73.5), hydrous (∌5 wt% H2O) and very oxidized (ΔNNO = +1.5–2.0) HMB liquids at middle crustal pressures and temperatures from ∌1,160 to ∌1,060°C. Hornblende played no role in the early petrogenetic evolution. Derivative HAB melts may contain up to 7–8 wt% dissolved H2O. Primitive basaltic liquids at Soufriere, St Vincent, have a wide range of H2O concentrations (2–5 wt%)

    Petrology of parasitic and eccentric cones on the flanks and base of Somma-Vesuvius

    Get PDF
    Parasitic and eccentric cones on the flanks and at the base of Somma-Vesuvius potentially provide information on the plumbing system of the complex. We present geochemical data for minerals, glasses and rocks from the Pollena and Cercola cones. The rocks are phonotephrites and a basaltic trachyandesite. A volumetrically dominant type contains phenocrysts of olivine, clinopyroxene, leucite, plagioclase ± apatite ± Fe-Ti-oxides. A second type is phlogopite-phyric. Low magnesium-numbers (62–49) and Ni abundances (≀32 ppm) indicate that the primary magmas underwent crustal-level fractionation but the cores of olivine and clinopyroxene phenocrysts carry records of the parental magmas. Geochemical data indicate that the rocks form more than one magmatic lineage. Matrix glasses point to low-pressure fractionation trends towards decreasing melt silica-undersaturation. The phlogopite-phyric rocks were derived from more hydrous magmas than those lacking phlogopite phenocrysts, perhaps at higher pressures. Phenocryst assemblages are difficult to reconcile with published experimental work and it is likely that they are far from equilibrium assemblages. The cone magmas were probably derived from high levels within the main plumbing system via lateral transport

    Peralkaline Silicic Extrusive Rocks: Magma Genesis, Evolution, Plumbing Systems, and Eruption.

    Get PDF
    Peralkaline silicic extrusive rocks are an important component of the volcanological record. Here we review several aspects of their formation and evolution, including the tectonic settings in which they occur, their main petrological and geochemical features, the magmatic lineages along which they evolve, and the parameters (T, P, fO2, melt water contents) that control the lineages. Particular attention is paid to the composition of the extraordinary melts formed at the lowest temperatures. Various lines of evidence are presented to explain the silica-gaps in some lineages. The partial melting of continental crust and the role of crustal contamination are considered to be of relatively minor importance in their genesis. High P-T experiments aimed at quantifying the lineages are assessed. Geophysical and petrological evidence for the depth and nature of the plumbing systems is presented. Differentiation mechanisms within reservoirs and the ubiquity of the formation of compositional zonation are discussed, as are the timescales involved. Volcanic hazards and the environmental impact of eruptions are described and a brief assessment of the ore potential of the extrusives is given

    Extreme Differentiation along Multiple Liquid Lines of Descent in Strongly Peralkaline Magma Series at Pantelleria (Italy)

    Get PDF
    The liquid line of descent from trachyte to pantellerite is controlled primarily by fractional crystallization of alkali feldspar, with whole rock compositions following a fractionation path along the ‘thermal valley’ in the peralkaline haplogranite system Qz-Ab-Or-Ac-Ns and terminating at a minimum on the feldspar-quartz cotectic. Although whole-rock compositions for different pantelleritic suites follow nearly identical paths in a Qz-Ab-Or projection that terminate near the experimental minimum (Qz40.5Or34.5Ab25 at 100 MPa, projected from Ac-Ns), matrix glass from samples with near-minimum compositions record extreme differentiation and form a ‘cotectic delta’ beyond the terminus of the ‘thermal valley’. Although each glass trend shows a continuing increase in Zr to \u3e3000 ÎŒg/g, the most evolved compositions in each suite differ in peralkalinity (mol [Na+K] / Al) and in the proportions of FeOT, Qz, Ab, Or, and other components, which are related to subtle variations in the mafic phases controlled mainly by differences in oxygen fugacity (fO2)and pressure (P). To determine the controls over mafic mineral crystallization in pantelleritic magmas and the various paths these suites take beyond the apparent (whole-rock) minimum, amphibole-phyric suites from the ∌159 ka Cala dell’Altura and Cala Gadir volcanic centres and the ∌8–10 ka Cuddia Mida volcanic centre on Pantelleria have been analyzed and compared with each other and with the well-characterized and amphibole-free, compositionally zoned Green Tuff, the ∌46 ka caldera-forming ignimbrite of the Cinque Denti caldera. Differences between the extended fractionation trends may be ultimately attributed to variations in oxygen fugacity, depth of emplacement, and water saturation. Shallower (lower pressure) magma reservoirs such as the one for the Green Tuff are water saturated and undergo degassing, which leads to an increase in relative oxygen fugacity. Deeper (higher pressure) magma reservoirs remain water-undersaturated and retain water in the melt, which both maintains lower relative oxygen fugacities and enables the crystallization of amphibole. Amphibole formation appears to require melt water contents \u3e4 wt%, low oxygen fugacity

    Phase equilibrium constraints on the production and storage of peralkaline silicic magmas: insights from Kenya and Pantelleria.

    No full text
    The origin of peralkaline silicic rocks is still obscure and stands perhaps as one of the last major unsettled issues in classic igneous petrology. The debate goes back to the end of the 18th century and despite intensive petrological, geochemical and laboratory efforts the consensus has yet to emerge as to which mechanisms produce peralkaline derivatives. Bowen (1937) first proposed that the shift from metaluminous to peralkaline field was due to extensive fractionation of calcic plagioclase. Perhaps the best illustration of such an hypothesis is provided by the Boina rock series in the Ethiopian rift studied by Barberi et al. (1975). However, such an hypothesis still awaits experimental confirmation. A different view has been expressed for the origin of peralkaline rhyolites erupted in the central part of the Kenya Rift Valley. There, a partial melting of crustal protoliths has been advocated on the basis of geochemical arguments (Macdonald et al., 1987). The origin of peralkaline rocks at Pantelleria, the type locality of peralkaline rhyolites, is also a matter of debate. Mahood et al (1990) have proposed an origin via partial melting of Fe-rich differentiates of transitional basalts, whilst Civetta et al. (1998) have argued that pantellerites could be produced via extensive fractionation of their putative parent basalts. The diversity of opinions reflects in part that, presumably, there is not only one mechanism at work. But it is also due to the fact that most experimental studies devoted to the clarification of this problem have failed in producing decisive arguments during more than one century of intense debate

    Evolution of the magma system of Pantelleria (Italy) from 190 ka to present

    Get PDF
    The eruptive history of Pantelleria has been marked by the eruption of nine peralkaline ignimbrites, with inter-ignimbrite episodes from small, local volcanic centres. New whole-rock geochemical data are presented for seven ignimbrites and used with published data for younger units to track compositional changes with time. From»190 ka, silicicmagmatismwas dominated by comenditic trachyte to comendite compositions, evolving along generally similar liquid lines of descent (LLOD). The final ignimbrite, the Green Tuff (»46 ka), was tapped from a compositionally zoned pantelleritic upper reservoir to a trachytic mush zone. Younger (20–7 ka) silicic magmatism has been relatively small scale, with compositions similar to the earliest pre-Green Tuff pantelleritic ignimbrite (Zinedi). These data suggest that the comenditic reservoirs may have been emplaced at deeper levels than the pantelleritic reservoirs. While both types of series evolved along similar LLOD dominated by fractionation of alkali feldspar, it is the fractionation of iron that determines whether comendite or pantellerite is produced. The deeper reservoirs were more oxidizing and wetter, thus leading to the crystallization of magnetite and therefore the fractionation of iron

    Low-temperature zircon growth related to hydrothermal alteration of siderite concretions in Mississippian shales, Scotland

    Get PDF
    Zircon occurs in voids and cracks in phosphatic coprolites enclosed in siderite concretions in Mississippian shales near Edinburgh, Scotland. The zircon formed during hydrothermal alteration of early-diagenetic concretions and occurs as spherical aggregates of prismatic crystals, sometimes radiating. Vitrinite reflectance measurements indicate temperatures of ~270°C for the zircon-bearing concretions and the host shales. Molecular parameter values based on dibenzothiophene and phenanthrene distribution and occurrence of di- and tetra-hydro-products of polycyclic aromatic compounds suggest that the rocks experienced relatively high-temperature aqueous conditions related to hydrothermal fluids, perhaps associated with neighboring mafic intrusions. The zircon was dissolved from the concretions, transported in fluids, and reprecipitated in voids. This is the first record of the precipitation of authigenic zircon in sedimentary rock as a new phase, not as outgrowths

    Functional network changes and cognitive control in schizophrenia

    Get PDF
    Cognitive control is a cognitive and neural mechanism that contributes to managing the complex demands of day-to-day life. Studies have suggested that functional impairments in cognitive control associated brain circuitry contribute to a broad range of higher cognitive deficits in schizophrenia. To examine this issue, we assessed functional connectivity networks in healthy adults and individuals with schizophrenia performing tasks from two distinct cognitive domains that varied in demands for cognitive control, the RiSE episodic memory task and DPX goal maintenance task. We characterized general and cognitive control-specific effects of schizophrenia on functional connectivity within an expanded frontal parietal network (FPN) and quantified network topology properties using graph analysis. Using the network based statistic (NBS), we observed greater network functional connectivity in cognitive control demanding conditions during both tasks in both groups in the FPN, and demonstrated cognitive control FPN specificity against a task independent auditory network. NBS analyses also revealed widespread connectivity deficits in schizophrenia patients across all tasks. Furthermore, quantitative changes in network topology associated with diagnostic status and task demand were observed. The present findings, in an analysis that was limited to correct trials only, ensuring that subjects are on task, provide critical insights into network connections crucial for cognitive control and the manner in which brain networks reorganize to support such control. Impairments in this mechanism are present in schizophrenia and these results highlight how cognitive control deficits contribute to the pathophysiology of this illness
    • 

    corecore