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A B S T R A C T

Cognitive control is a cognitive and neural mechanism that contributes to managing the complex demands of
day-to-day life. Studies have suggested that functional impairments in cognitive control associated brain
circuitry contribute to a broad range of higher cognitive deficits in schizophrenia. To examine this issue, we
assessed functional connectivity networks in healthy adults and individuals with schizophrenia performing tasks
from two distinct cognitive domains that varied in demands for cognitive control, the RiSE episodic memory task
and DPX goal maintenance task. We characterized general and cognitive control-specific effects of schizophrenia
on functional connectivity within an expanded frontal parietal network (FPN) and quantified network topology
properties using graph analysis. Using the network based statistic (NBS), we observed greater network functional
connectivity in cognitive control demanding conditions during both tasks in both groups in the FPN, and
demonstrated cognitive control FPN specificity against a task independent auditory network. NBS analyses also
revealed widespread connectivity deficits in schizophrenia patients across all tasks. Furthermore, quantitative
changes in network topology associated with diagnostic status and task demand were observed. The present
findings, in an analysis that was limited to correct trials only, ensuring that subjects are on task, provide critical
insights into network connections crucial for cognitive control and the manner in which brain networks
reorganize to support such control. Impairments in this mechanism are present in schizophrenia and these results
highlight how cognitive control deficits contribute to the pathophysiology of this illness.

1. Introduction

Cognitive deficits are among the most debilitating symptoms of
schizophrenia (SZ; Green, 1998; Heinrichs, 2005). Present at the onset
of illness, these symptoms can persist regardless of illness stage and
negatively impact a wide range of cognitive systems to include
impaired attention (Reichenberg, 2010), executive functioning
(Minzenberg et al., 2009), verbal fluency, working and episodic
memory (Manoach et al., 2000; Ragland et al., 2009). Neuroimaging
studies have traditionally examined the range of cognitive systems
affected by the disease in isolation and the literature reflects a varied
pattern of functional neural markers that reflects the functional
circuitry associated with the range of domains studied. The current
study was designed to address a higher level theoretical hypothesis

regarding the common functional circuitry associated with patients'
deficits in a general purpose cognitive control network involved in
regulating a range of cognitive domains and tasks.

Cognitive control is the ability to adapt information processing and
regulate behavior according to one's current goals (Badre, 2008;
Dreisbach, 2012; Miller, 2000; Miller and Cohen, 2001; Veen and
Carter, 2006). This mechanism is not limited to a particular cognitive
domain (Banich, 1997) and supports a range of executive functions,
including allocation of attention, working memory, episodic memory
(Ragland et al., 2009), and inhibitory processing (Banich et al., 2000).
Meta-analyses of functional neuroimaging data in healthy individuals
provide evidence for a superordinate cognitive control network that
supports a diverse range of executive functions (Niendam et al., 2012).
It has been posited that a number of deficits in higher cognition in
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schizophrenia and other disorders may be attributed to dysfunction in a
such a general purpose cognitive control network that supports a
diverse range of cognitive functions when high levels of control are
required (Lesh et al., 2010; Minzenberg et al., 2009; Niendam et al.,
2012; Sheffield et al., 2014). This is consistent with meta-analytic
findings showing that healthy controls (HC) and schizophrenia patients
activated a similarly distributed cortical-subcortical network while
performing a range of different executive tasks (Minzenberg et al.,
2009). In direct between-group comparisons, individuals with schizo-
phrenia exhibited reduced activation in the dorsolateral prefrontal
cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), dorsal anterior
cingulate cortex (ACC), pre-SMA, ventral premotor cortex, posterior
areas in the temporal and parietal cortex, and sub-cortical areas. These
meta-analytic results motivate the present study, which seeks to
examine the brain's dynamic network properties during the engagement
of cognitive control across two tasks spanning two distinct but
important cognitive domains that have been repeatedly shown to be
impaired in SZ; episodic memory, and goal maintenance.

Cognitive control engagement is important for episodic memory,
playing a role in both encoding and memory retrieval (Ranganath et al.,
2008). Long-term memory (LTM) for episodic events can be facilitated
by focusing on distinctive features of individual items (i.e., item-specific
encoding) or by establishing relationships between multiple items (i.e.,
relational encoding) (Ragland et al., 2012, 2009). These memory-
encoding processes are of interest because they generate different
cognitive control demands. The Relational and item-Specific Encoding
task (RiSE), validated by the Cognitive Neuroscience Test Reliability
and Clinical applications for Schizophrenia (CNTRACS) Consortium
was designed to provide a valid and reliable measure of episodic LTM in
SZ (Gold, 2012; Ragland et al., 2012; Strauss et al., 2014b). In addition,
the RiSE task can dissociate specific encoding and retrieval processes.
The current study focuses on changes in functional connectivity
associated with varying cognitive control demands during the RiSE
task.

Goal maintenance is a critical component of cognitive control and
refers to the collection of cognitive processes that activate task-related
goals or rules and keep them represented and accessible for constrain-
ing attention, and working memory, to guide behavior (Henderson
et al., 2012). The AX Continuous Performance Task (AX-CPT; Cohen
et al., 1999; MacDonald, 2007; Servan-Schreiber et al., 1996) has been
recommended by CNTRICS (Cognitive Neuroscience Treatment Re-
search to Improve Cognition in Schizophrenia; http://cntrics.ucdavis.
edu) and RDoC (Research Domain Criteria) as a valid measure of this
aspect of cognitive control. A strength of the task is that it generates
process-specific patterns of performance that are different from those
that would be expected from a generalized deficit in SZ (Knight and
Silverstein, 2001; MacDonald and Carter, 2002; Barch et al., 2003;
Cohen et al., 1999; Javitt et al., 2000). The current study utilizes the
Dot Pattern Expectancy (DPX) task, a variant of the expectancy AX-CPT,
where complex visual cues (rather than letters) provide context for
responding to a subsequent probe. A key manipulation of this task is
that cues indicate the need for high or low levels of cognitive control.

Recent advances in graph theory methodology allow for sophisti-
cated mathematical analyses of brain network interactions during task
performance. In the context of the current study, a network is defined
by a collection of nodes (e.g. functionally defined brain regions), and
links (e.g. functional connectivity) between pairs of nodes. Graph
theory-based approaches have identified biologically plausible brain
networks found to topologically organize in a meaningful and efficient
manner (e.g. small-world architecture and modular structure) that
support efficient neural processing (He et al., 2007; Liu et al., 2008;
Sporns and Zwi, 2004; van den Heuvel et al., 2008). These network
analyses allow us not only to visualize the overall connectivity pattern
among all elements of the brain but also to quantitatively characterize
global organization (Wang, 2010).

Using graph theory to examine functional connectivity changes

within our expanded FPN, we predict that participants will exhibit
greater functional connectivity during high cognitive control conditions
than in low cognitive control conditions during the RiSE and DPX tasks.
We also hypothesize that individuals with schizophrenia will exhibit
decreased functional connectivity during high cognitive control condi-
tions in the RiSE and DPX tasks. These hypotheses are supported by
previous CNTRACS studies independently examining behavioral and
fMRI data from the RiSE and DPX (Poppe et al., 2016; Ragland et al.,
2015; Sheffield et al., 2015). The current study examines local
connectivity changes, as well as functional network changes within
the FPN as cognitive control is engaged broadly across multiple
cognitive domains during task based fMRI and to elucidate specific,
cognitive control related functional connectivity deficits in schizophre-
nia.

We adapted a beta series correlation technique (Mumford et al.,
2012; Rissman et al., 2004) to construct event-related functional
connectivity networks in healthy adults and individuals with schizo-
phrenia performing two cognitive control engaging tasks, the RiSE and
DPX, spanning different cognitive domains. The beta series approach, as
opposed to task regression, leverages trial-by-trial estimates of BOLD
activation. We characterized general and cognitive control-specific
effects of schizophrenia on functional brain connectivity within an
expanded frontal parietal network (FPN; associated with cognitive
control functioning) that included nodes from medial temporal lobe
(MTL) memory systems, and also quantified network topology proper-
ties using graph analysis (Rubinov and Sporns, 2010; Zalesky et al.,
2010a). We also assessed domain general deficits in cognitive control
consistently observed in SZ across all tasks examined. We hypothesized
that increased demand for cognitive control will lead to functional
changes in network interactions and changes in key topological proper-
ties in the expanded frontal parietal network. Specifically, we predicted
that greater cognitive control demands will be accompanied by
increased functional connectivity, network efficiency, transitivity, and
assortativity. Furthermore, given the evidence that cognitive control
impairments occur on a background of generalized cognitive deficits in
schizophrenia (Lesh et al., 2010), we hypothesized that patients would
show widespread reduced functional connectivity, particularly in PFC
regions, regardless of task demands, in addition to more circumscribed
connectivity reductions specific to cognitive control processes.

2. Materials and methods

2.1. Subjects

Study participants were recruited as part of the CNTRACS
Consortium (http://cntracs.ucdavis.edu), which included 5 different
research sites: University of California—Davis, Maryland Psychiatric
Research Center at the University of Maryland, and Rutgers University
–Robert Wood Johnson Medical School, University of Minnesota—Twin
Cities, and Washington University. Recruitment and informed consent
procedures for each site were approved by their Institutional Review
Boards. Complete details regarding CNTRACS recruitment and enroll-
ment can be found in Henderson et al. (2012).

Data were obtained on 60 HC and 60 SZ participants. Participants
were excluded if they exhibited excess movement (i.e., > 0.37 mm
relative frame-to-frame movement), below-chance performance, or
image acquisition errors. This left final samples of 56 HC
(34.0 ± 11.4 yrs) and 52 SZ (33.8 ± 11.8 yrs) for the RiSE task,
and 52 HC (34.1 ± 11.4 yrs) and 45 SZ (34.2 ± 11.7 yrs) of the same
subjects for DPX task (Table 1). Groups were matched for age, sex,
handedness, parental education level, and estimated premorbid intelli-
gence (Weschler Test of Adult Reading). Individuals with schizophrenia
obtained fewer years of school than healthy controls, likely reflecting
disruption caused by illness onset. Patients were clinically stable, and
were experiencing mild symptoms. All but 4 patients were receiving
medication for at least one month (2 first-generation antipsychotics,
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41 second-generation antipsychotics, 4 first- and second-generation
antipsychotics). Groups were not significantly different with regard to
absolute or relative head movement (RISE: p = 0.114; DPX:
p = 0.278). See Supplemental material for movement scrubbing pro-
cedures.

2.2. Data acquisition

2.2.1. RiSE task
To briefly describe the fMRI paradigm, participants completed an

encoding run followed by a retrieval run. During encoding
(Supplementary Fig. S1A), participants alternated between item-speci-
fic blocks (“Is either object living?”) and relational blocks (“Can one
object fit inside the other?”) in a “jittered” event-related design. During
item recognition (Supplementary Fig. S1B), participants indicated
whether objects were previously studied (“old”) or never-studied
(“new”). Participants completed 4 encoding and 4 recognition runs
that were used for analysis.

2.2.2. DPX task

The DPX task consisted of a sequence of cue-probe stimuli where
participants made one response when a target cue-probe pair was
presented and another response for all other stimuli (Supplementary
Fig. S2). Cues indicated the need for high (B Cues) or low (A Cues)
levels of cognitive control. Participants completed 4 runs of the DPX
task that were used for analysis. See the Supplementary information or
(Poppe et al., 2016) for more detail.

2.3. Preprocessing

Images were acquired in a single 3T MRI session using a consistent
protocol across sites. Administration of the RiSE and DPX tasks was
counterbalanced across subjects. Functional images were acquired
using gradient-echo BOLD echo-planar imaging (TR = 2000 ms,
TE = 30 ms, 77° flip angle, FOV = 220 mm2, 3.43 × 3.43 × 4 mm
voxels, 32 axial slices parallel with the anterior/posterior commissure).
For more information see Henderson et al. (2012).

Pre-processing was carried out using the FMRI Expert Analysis Tool
(FEAT) in the FMRIB Software Library (FSL version 4.1; www.fmrib.ox.
ac.uk/fsl) using standard procedures, including fieldmap correction,
spatial normalization and nonlinear registration to MNI152 (Fig. 1: Step
1). Field maps to correct fMRI data for geometric distortion caused by
magnetic field inhomogeneities and a T1-weighted anatomical image
(1-mm isotropic voxels) were also acquired.

2.4. Data processing (Beta-series regression)

Subject-wise beta-series regression analysis was performed on RiSE
and DPX fMRI data in order to capture trial specific BOLD effects for
each condition (Turner et al., 2012). To measure event-related func-
tional connectivity, individual trials were modeled with a unique delta
function, convolved with a canonical hemodynamic response function,
using SPM8. The ability to model individual trials within an event-
related design highlights a unique advantage beta-series regression
provides the current functional connectivity analysis over previously
applied pseudo-resting state, or task regression, approaches. In a
pseudo-resting state analysis, functional connectivity is typically mea-
sured throughout an entire run where all trials are treated identically
(Sheffield et al., 2015). The current study benefits from the ability of
the beta-series regression to model events uniquely, thus allowing us to
examine changes in functional connectivity between trial types (i.e.
functional connectivity associated with cognitive control demand).

Separate regressors modeling each event were defined in a general
linear model to yield unique condition-wise beta values for every voxel
(Fig. 1: Step 2). Each beta value reflected the magnitude of the
hemodynamic response evoked by each event. Beta images were sorted
by condition and concatenated across runs yielding a 4D dataset (space
x n trials), or beta-series, for each condition (Fig. 1: Step 3). While all

Table 1
Participant demographics. Abbreviations: BPRS, Brief Psychiatric Rating Scale; HCs,
healthy controls; N/A, not applicable; UPSA-B, Brief University of California San Diego
Performance-Based Skills Assessment; WTAR, Wechsler Test of Adult Reading. *Two-
tailed test.

HCs (n = 56) Patients (n = 52) P-value*
Mean (SD) Mean (SD)

Age, y 33.98 (11.40) 33.78 (11.83) 0.93
WTAR 37.89 (10.2) 36.00 (9.24) 0.32
Education, y
Participant 14.84 (1.87) 13.1 (1.7) < 0.001
Parent 14.9 (3.9) 15.2 (3.2) 0.66

Male sex, No. (%) 40 (71%) 40 (77%) 0.52
Right Handed, No. (%) 52 (93%) 46 (88%) 0.43
BPRS score
Total N/A 42.4 (10.9)
Positive N/A 10.3 (5.2)
Disorganized N/A 6.6 (2.3)
Negative N/A 4.9 (1.8)

UPSA-B score N/A 79.6 (9.6)

Fig. 1. Data processing pipeline. Step 1: Standard fMRI data preprocessing was carried
out in FSL. Step 2: Beta-series regression analysis was performed to capture trial specific
BOLD effects for each condition, borrowed from Rissman et al., 2004. Step 3: Beta images
representing similar trial types were concatenated, resulting with a 4D dataset for each
condition type. Step 4: Pairwise correlations for each of the 245 nodes were extracted,
resulting with a 245 × 245 connectivity matrix.
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events were modeled, only cue events for DPX correct trials and correct
RiSE trials were included in the analysis, because these represented trial
periods in which cognitive control demands were maximized.

Next, each participant's brain was parcellated into discrete regions
of interest representing nodes using from the Power atlas (Power et al.,
2011). Twenty-one Power nodes were eliminated due to low signal, and
two bilateral MTL nodes were added (MNI coords: -30,-12,-22; 32,-14,-
22) resulting with 245 nodes across the whole-brain. Beta-series
pairwise correlations for all 245 nodes were extracted and z-trans-
formed resulting with a 245 by 245 connectivity matrix. Finally,
connectivity matrices were reduced to a subset of thirty-one nodes that
included the FPN as well as nodes in the hippocampi and para-
hippocampi (Fig. 1: Step 4). This subset of nodes was chosen due to
the known association of the FPN with cognitive control (Cole et al.,
2013; Repovs et al., 2011) and hippocampal engagement during
episodic memory tasks (Ragland et al., 2015, 2009). A secondary
subset of nodes associated with the auditory network was extracted
for graph analysis to serve as a comparable, “control” network as it
should not be influenced by cognitive control.

2.5. Graph analysis

The generalizability, and inherent flexibility of graph theoretical
analysis allows us to leverage the information contained within the
fMRI BOLD signal to test hypotheses regarding the functional organiza-
tion of the human brain (Bullmore and Bassett, 2011). Given our
interest in local and global network changes, as well as changes across
task conditions and populations, we employed two complimentary
methods of graph theory: the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010), and Network-based Statistic (Zalesky et al., 2010a).

2.5.1. Network-based statistic (NBS)
NBS (Zalesky et al., 2010a) is a graph theory based method that

provides a statistical approach to identify connections in a graph that
may be associated with a diagnostic status or changing psychological
contexts in task-based studies. This method tests the null hypothesis
with respect to the size of interconnected components of edges, rather
than individually at each connection. In this context, a graph compo-
nent refers to a collection of nodes that can be linked together via a set
of suprathreshold edges. The size of these components is determined
following application of a primary, component-forming threshold to the
data. This approach offers substantially more power than the FDR for
identifying sub-networks of edges showing a common effect.

We employed the NBS to examine functional network differences
between high- and low-control conditions (i.e. RiSE: item vs. relation,
DPX: A Cue vs. B Cue), the main effect of group (HC vs. SZ), and to
identify interaction effects of group and task. Functional network
differences were tested across a range of t-thresholds to ensure the
reliability of results. Results presented represent functional network
differences for t > 2.5 (5000 permutations), as it provided the most
robust findings across a uniform t-threshold.

2.5.2. Brain Connectivity Toolbox (BCT)

The BCT is a network analysis tool for exploring connectivity
relationships in both individual subjects and subject groups (Rubinov
and Sporns, 2010). Metrics supported by the BCT provide means to
measure Functional Segregation, Functional Integration, and Resilience of a
given network. Here, the BCT was used to measure quantifiable changes
of functional network organization across each condition presented
within the RiSE and DPX tasks in both healthy adults and those with
schizophrenia. These analyses were performed independent of NBS
tests.

2.5.3. Changes in network topology

To identify topological properties that varied with group or
cognitive control demand, the global efficiency, transitivity, and
assortativity (Supplementary Table 1) were calculated for the top
10% strongest functional connections. Thresholding is standard prac-
tice in graph theory literature as it serves several methodological
purposes (Bassett et al., 2009; Bullmore and Sporns, 2012; Power
et al., 2011; Power et al., 2010; Sporns, 2012; Zalesky et al., 2010b). We
employed a stringent threshold to increase specificity (i.e. limit the
number of false positive connections; Zalesky et al., 2016). Most
importantly, proportional thresholding allows for comparison of graphs
across groups that may have different distributions of correlation
magnitude, a common finding in the schizophrenia literature (Fornito
et al., 2011; Fornito et al., 2012). Notably, network metrics were
calculated across a range of thresholds to ensure the stability of our
findings (Supplementary Fig. S3). A repeated-measures ANOVA was
performed to identify main effects of task, and main effects of group for
the three topological properties extracted for RiSE and DPX tasks.

Transitivity, an index of functional segregation, measures the
amount of clustering in a network (Newman, 2003). Otherwise known
as the clustering coefficient, it is a ratio of triangles to triplets in a
graph, which measures the extent to which neighbors of a node also
connect to each other. Increased transitivity, often associated with
greater functional specialization, has been observed during cognitive
control assessment using the color-word Stroop task (Spielberg et al.,
2015). Thus we predict increased transitivity would be associated with
a greater demand for cognitive control. Global efficiency, a measure of
functional integration, describes how well a network can combine
specialized information across distributed regions. Global efficiency is
the inverse average shortest path length of a graph and is a measure of
parallel information transfer (Achard and Bullmore, 2007; Rubinov and
Sporns, 2010). Previous magnetoencephalography and fMRI studies
have observed increased global efficiency associated with task demand
in working memory (Giessing et al., 2013; Kitzbichler et al., 2011).
Similarly, we predict increased global efficiency would be associated
with a greater demand for cognitive control. Assortativity, an index of
resilience, quantifies the correlation between the degree of a node and
the mean degree of its nearest neighbors (Bassett et al., 2008; Newman,
2002), which identifies the extent to which highly connected nodes are
connected to other highly connected nodes. In highly assortative
networks, high degree nodes (or hubs) are likely to be connected to
each other, and thus are more resilient to disruption (e.g., removal of
nodes) because the core of highly connected nodes provides redundant
connections within the graph. We predict that increased assortativity
will be associated with an increased demand for cognitive control.
Collectively, these network properties were used to quantitatively
assess the manner in which brain networks reorganize to support
cognitive control during the RiSE and DPX tasks.

The overwhelming majority of fMRI studies in SZ have identified
connectivity reductions in patients; these findings include decreased
clustering, degree, and hubness (Alexander-Bloch et al., 2010; Liu et al.,
2008; Lynall et al., 2010). Thus we predict that transitivity, a measure
of clustering, will be decreased in patients. Assortativity is the correla-
tion between the degrees of connected nodes. Considering that
decreased node degree has been observed in patients, we predict that
assortativity will also be decreased in patients. Despite inconsistent
global efficiency findings in patients at rest, previous decreased
activation observed during the RiSE and DPX paradigms leads us to
predict that patients will exhibit decreased global efficiency in the FPN.

3. Results

3.1. Behavior

Differences in performance accuracy between groups was assessed
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using d′ scores (Servan-Schreiber et al., 1996) for the recognition
condition in the RiSE task and the DPX task. Notably, accuracy in the
RiSE recognition task was examined separately for item encoded and
relationally encoded stimuli. A group-by-task repeated-measures ANO-
VA showed that healthy adults demonstrated significantly greater
accuracy (d’) than individuals with SZ during the recognition of item
and relationally encoded objects in the RiSE task, and decreased d-
prime context, a specific measure of cognitive control, during the DPX
task (Fig. 2; p < 0.001 f= 25.18). The ANOVA also identified
accuracy differences across tasks (p < 0.001 f = 72.551) where all
participants were least accurate at recognizing item encoded stimuli,
and most accurate during DPX performance.

3.2. NBS

3.2.1. Effects of task
As predicted, increased positive functional connectivity was ob-

served in the RiSE task during recognition of relationally encoded
stimuli (high cognitive control) as compared to item stimuli (low
cognitive control) across participants in a network of 9 nodes and 11
edges (Fig. 3: top row, p= 0.041). Interestingly, while 7 of 10 nodes in
this network were located in the right hemisphere, nearly all of
functional connections were inter-hemispheric. Moreover, one half of
the network edges were connected to the left MTL (left parahippocam-
pus; MNI coordinates: -26,-40,-8).

Observed network functional connectivity was also greater in the
DPX task for high cognitive control B-Cues compared to low control A-
Cues in a component of 21 nodes and 91 edges (Fig. 3: top row,
p < 0.001). Nodes within this network were located in the PFC and
parietal regions, with a large number of intra-hemispheric of long-range
functional connections. Notably, this network did not include the MTL.

A small component comprised of 6 nodes and 5 edges displaying
increased positive functional connectivity was observed during the RiSE
encoding of relational stimuli (high cognitive control) compared to item
stimuli (low cognitive control), however it did not meet significance
(Supplementary Fig. S4 p = 0.09). The observed trend level effect
corresponds with activation findings presented in Ragland et al. (2015).

As expected, the task negative auditory network displayed no
changes in functional connectivity between hi and low control condi-
tions during the RiSE and DPX tasks.

3.2.2. Effects of group

Widespread functional differences were observed in schizophrenia
patients for all conditions examined. When contrasting patients and
controls, reduced positive functional connectivity was observed in SZ
patients during RiSE encoding in a component of 23 nodes and 77 edges
(Fig. 3: middle row, p < 0.001). Likewise, reduced positive functional
connectivity was observed in SZ patients during RiSE recognition
conditions in a component of 12 nodes and 13 edges (Fig. 3: middle
row, p= 0.028). Reduced positive functional connectivity in SZ
patients was also observed in the DPX task in a component of 25 nodes
and 167 edges (Fig. 3: middle row, p < 0.001).

A significant group difference in the number of beta-images
contributing to the RiSE recognition conditions was observed (Item:
p = 0.004; Relation: p= 0.003). To ensure that the network of reduced
functional connectivity identified in patients was not a result of fewer
beta-images, we re-examined RiSE recognition group effects using the
number of betas as a covariate. This resulted with a larger network of
20 nodes and 48 edges (p= 0.004) displaying decreased functional
connectivity in patients (Supplementary Fig. S5). The difference in
betas contributing to RiSE encoding and DPX analyses did not meet
significance.

Schizophrenia patients displayed decreased functional connectivity
in the auditory network during both RiSE and DPX tasks
(Supplementary Fig. S6), likely reflecting a generalized deficit com-
monly observed in the population.

3.2.3. Interaction effects

A group x condition interaction was identified for RiSE recognition
across 7 nodes and 6 edges (Fig. 2: lower row, p = 0.041; Table 2). This
network identifies connections that exhibited a greater reduction in
positive connectivity in SZ than HC during high cognitive control
conditions. This network consisted of nodes located in the PFC and
MTL, but not in the parietal cortices. Likewise, a group x condition
interaction was identified during the DPX task in a component of 18
nodes and 24 edges (Fig. 2: lower row, p < 0.013; Table 2). Interest-
ingly, nearly all functional connections in this network were between
nodes in the PFC and MTL.

When comparing functional networks exhibiting an interaction
effect during the RiSE and DPX task, we identified five nodes that were
present in both networks (Fig. 4). These nodes were located in the right
DLPFC (MNI coordinates: 48,25,27), left precentral gyrus (-44,2,46),
left inferior frontal gyrus (-42,45,-2) and bilateral MTL (-26,-40,-8; 32,-
14,-22).

As predicted the task negative auditory network displayed no
interaction effects during the RiSE and DPX tasks confirming its status
as a non-task related “control” network and supporting the task
specificity of the group differences reported above.

3.3. BCT

3.3.1. Changes in network topology
We employed select graph theory metrics to measure quantifiable

changes of functional network organization within our extended FPN
during the RiSE and DPX tasks in both healthy adults and those with
schizophrenia. The evaluated network topological metrics included
global efficiency, transitivity, and assortativity. Furthermore, the local
efficiency metric was used to assess node specific functional changes.

When comparing network topology of high to low cognitive control
conditions, measurable network differences within the FPN were
observed during both tasks (Table 3). During the RiSE recognition
conditions, we observed greater transitivity (F1,106 = 7.004,
q = 0.027) of item-specific (low control) stimuli compared to relational
(high control) stimuli. Whereas in the DPX task, greater transitivity
(F1,95 = 19.378, q < 0.000) was observed during B Cue stimuli (high

Fig. 2. Task performance during RiSE and DPX tasks. Repeated-measures ANOVA
identified significant between group differences in task performance (d’ scores) and
significant performance differences across tasks (p < 0.001). Notably, accuracy in the
RiSE recognition task was examined separately for item encoded and relationally encoded
stimuli.

K.L. Ray et al. NeuroImage: Clinical 15 (2017) 161–170

165



Fig. 3. Functional network connectivity changes in the frontal parietal network during RiSE and DPX tasks. Task effects (top row) comparing high vs. low control conditions were
observed during RiSE recognition (top row: center), and DPX (top row: right) paradigms. Group effects (middle row), displaying decreased functional connectivity in schizophrenia
patients were observed during RiSE encoding (middle row: left), RiSE recognition (middle row: center), and DPX (middle row: right) paradigms. Group by task interactions were observed
during RiSE recognition (bottom row: center), and DPX (bottom row: right) paradigms. *Indicates network threshold at t > 2.7, otherwise t > 2.5.

Table 2
NBS Interaction Effects. Group by condition interaction effects were observed during the RiSE recognition and DPX tasks where SZ patients demonstrated greater reductions in functional
connectivity during high cognitive control conditions compared to HC. T-scores for each connection within the RiSE recognition and DPX interaction networks are provided.

RiSE Recognition DPX

Node Node t stat. Node Node t stat.

Precentral L Precentral L 2.85 Frontal Inf Oper R Parietal Sup L 2.77
Frontal Inf Tri R Precentral L 2.74 Frontal Inf Oper R Frontal Mid R 3.06
Precentral L Frontal Mid Orb L 3.28 Precentral L Frontal Mid R 3.06
Frontal Mid Orb L Frontal Mid Orb R 3.15 Frontal Mid R Frontal Mid L 2.73
Frontal Mid Orb R ParaHippocampal L 2.72 Frontal Mid R Frontal Inf Tri L 2.68
Frontal Mid Orb R Hippocampus R 3.29 Precentral L Frontal Sup Medial L 2.53

Frontal Inf Tri R Frontal Sup Medial L 2.98
Frontal Mid R Frontal Sup Medial L 2.76
SupraMarginal R Frontal Sup Medial L 2.74
Parietal Inf R Frontal Sup Medial L 2.87
Frontal Mid R Frontal Sup Medial L 2.71
Frontal Mid R Frontal Sup Medial L 2.87
Frontal Mid L Frontal Sup Medial L 3.09
Frontal Inf Tri L Frontal Sup Medial L 3.01
Frontal Inf Tri R ParaHippocampal L 2.6
Frontal Inf Oper L ParaHippocampal L 2.72
Frontal Mid Orb L ParaHippocampal L 3.32
Frontal Inf Tri R ParaHippocampal L 3
Frontal Mid Orb L ParaHippocampal L 2.69
Frontal Inf Tri R ParaHippocampal R 2.68
ParaHippocampal L ParaHippocampal R 2.94
Frontal Inf Tri R Hippocampus R 3.01
SupraMarginal R Hippocampus R 2.84
Frontal Mid Orb L Hippocampus R 2.79
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control) compared to A Cue (low control) stimuli across subjects.
Group differences in network topology were also observed in the

FPN (Table 3). Increased network assortativity was observed in SZ
compared to HC during RiSE encoding (F1,106 = 7.443, q= 0.021), and
in the DPX task (F1,95 = 10.961, q = 0.003). Furthermore, SZ partici-
pants displayed decreased global efficiency (F1,95 = 6.469, q= 0.039)
and transitivity (F1,95 = 9.042, q = 0.005) compared to HC.

Similar to NBS analyses, minimal group effects were observed in the
“control” auditory network. Transitivity was greater in HC during the
DPX and RiSE Encoding tasks, while assortativity was greater in SZ
during RiSE recognition (Supplementary Table 2). No effects of
cognitive control or interaction effects were observed.

4. Discussion

We examined functional connectivity differences within an ex-
tended FPN that included the MTL during cognitive control in order
to gain new insights into the brain's functional network properties
during higher cognition, as well as its disruption in schizophrenia. The
unique combination of modeling event-related BOLD responses using
beta-series regression and network analysis allowed us to characterized
cognitive control-specific effects of schizophrenia on functional brain
connectivity, and quantitatively examined the associated changes in
network topology. In doing so, we identified a set of functionally
dissociated nodes within the cognitive control network that may
contribute to a range of cognitive deficits observed in SZ.
Importantly, overall, our findings indicate that the frontal parietal
network undergoes significant reconfiguration in response to domain
specific changes in the demand for cognitive control.

4.1. NBS

Increases in functional connectivity were observed in both RiSE and
DPX tasks during trial types requiring higher engagement of cognitive
control (Fig. 3). These findings have a high correspondence with
previous independent studies examining functional activity in the RiSE
(Ragland et al., 2015) and DPX (Lopez-Garcia et al., 2015) fMRI tasks in
both healthy adults and individuals with SZ. This indicates that in
addition to increases in functional activity, a higher level of distributed
FPN recruitment may also be needed to effectively carry out a more
cognitively challenging task. Notably, the negative finding regarding
functional changes associated with cognitive control demand in the
auditory network further support the specificity of the FPN results
presented.

Robust functional connectivity decreases in individuals with schizo-
phrenia were identified across all tasks examined. Schizophrenia
patients displayed common and unique functional connectivity deficits
across both memory and goal maintenance tasks. Group differences
observed in the current study complement findings presented in Fornito
et al. (2011), where investigators examined functional connectivity
changes associated with diagnostic status during an AX-CPT. Substan-
tial differences in functional impairment observed across tasks in the
present study, and the functional network interaction effects identified
ultimately are consistent with the hypothesis of a fundamental disrup-
tion of cognitive control that contributes to a broad range of cognitive
deficits in SZ. Replication analyses of these data using an alternate node
parcellation (Shen et al., 2013) yielded similar patterns of functional
deficits and interaction effects (see Supplemental material).

Furthermore, we observed a subset of five nodes whose functional
connections consistently displayed group-by-condition interaction ef-

Fig. 4. Nodes present in both RiSE and DPX networks displaying interaction effects. These nodes were located in the right DLPFC (MNI coordinates: 48,25,27), left precentral gyrus
(-44,2,46), left inferior frontal gyrus (-42,45,-2) and bilateral MTL (-26,-40,-8; 32,-14,-22).

Table 3
Changes in Network topology. Repeated-measures ANOVAs were performed examining the effect of level of control (high control vs. low control trial types), effect of group (HC vs. SZ),
and group by control interaction in the RiSE and DPX tasks. Analyses examined network topology of the FPN thresholded at a 10% whole-brain level. I = Item stimuli trials in the RiSE
task, R = Relational stimuli trials in the RiSE task, A = A Cue trials in the DPX task, B = B Cue trials in the DPX task, HC = Healthy Controls, SZ = individuals with schizophrenia. *
indicates FDR corrected within metric at p < 0.05.

Level of Control: High vs. Low Group Effect: HC vs. SZ Group x Control Interaction

RISE E q-value F(1,106) q-value F(1,106) q-value F(1,106)
Assortativity 0.29 1.341 0.021* (SZ > HC) 7.443 0.29 1.13
Global Efficiency 0.258 1.958 0.258 0.679 0.699 0.15
Transitivity 0.661 0.379 0.661 0.514 0.661 0.193
RISE IR F(1,106) F(1,106) F(1,106)
Assortativity 0.072 4.408 0.072 4.015 0.264 1.26
Global Efficiency 0.12 4.312 0.357 0.854 0.357 1.132
Transitivity 0.027* (I > R) 7.004 0.843 0.039 0.105 3.36
DPX F(1,95) F(1,95) F(1,95)
Assortativity 0.814 0.056 0.003* (SZ > HC) 10.961 0.641 0.635
Global Efficiency 0.183 1.8 0.039* (HC > SZ) 6.469 0.093 3.577
Transitivity 0.00* (B > A) 19.378 0.005* (HC > SZ) 9.042 0.137 2.247
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fects across tasks. This subset included the right DLPFC, left precentral
gyrus, left anterior PFC, and bilateral MTL. The union of nodes that
showed network interactions across both tasks highlights brain regions
associated with domain general deficits across both episodic memory
and goal maintenance tasks and supports the concept of a domain
independent cognitive control network impairment in individuals with
SZ. Interestingly, although these five nodes were involved in both RiSE
and DPX group-by-condition interactions, the connections (edges) with
these nodes that showed group differences in each task were different.
This unexpected finding may indicate that our cognitive control
network was not extensive enough and perhaps failed to include nodes
mediating connectivity between PFC regions (e.g. cortico-thalamic
projections). An alternative interpretation of the absence of group
differences in mutual edges between these 5 regions is that cognitive
control impairments in SZ stem from dysfunction in cortical hubs, as
opposed to specific aberrant functional connections. In other words,
functional impairments may be more strongly linked to local circuit
dysfunction in hubs that support network integration rather than to
altered long range connectivity across the brain.

4.2. BCT

The FPN exhibited significant reconfiguration in response to context
specific changes in demand for cognitive control across participants. As
predicted, we observed increased transitivity during B-Cue stimuli
compared to A-Cue stimuli in the DPX task. Transitivity is a measure
of functional segregation, reflects the extent to which brain regions
form tightly clustered groupings, and is often associated with greater
functional specialization (Newman, 2003). Thus increased specialized
functional segregation of the FPN may effectively support the higher
level of cognitive control processing needed during DPX B-Cue pre-
sentations.

Contrary to our hypotheses regarding network organization changes
in RiSE task, we observed an unexpected decrease in assortativity,
global efficiency and transitivity during RiSE relational recognition
compared to item recognition. Increased global efficiency has been
typically associated with greater functional integration (Achard and
Bullmore, 2007). Decreased global efficiency and transitivity during
relational recognition processing may reflect the increased performance
accuracy of recognizing relationally encoded objects. Thus increased
cognitive control demand during relational encoding processing may
facilitate accuracy and potentially reduce demands during recognition.

Significant differences in FPN organization associated with cogni-
tive control were also observed between healthy adults and schizo-
phrenia patients. Providing further evidence for the SZ dysconnectivity
syndrome hypothesis (Friston, 2002; Lynall et al., 2010), decreased
global efficiency and transitivity was observed in patients during the
DPX task. Similar findings have been reported in SZ studies during rest
(van den Heuvel and Fornito, 2014; van den Heuvel et al., 2010; van
den Heuvel et al., 2013), although there has been an admittedly mixed
set of findings regarding global efficiency in the disorder (Alexander-
Bloch et al., 2010). In addition, the present study observed assortativity
increases in SZ during RiSE encoding and DPX conditions with a similar
trend level effect during RiSE recognition. Assortativity reflects the
extent to which highly connected nodes are linked to other highly
connected nodes (Newman, 2002, 2003). While this finding was not
hypothesized, it corresponds with previous resting-state fMRI studies
examining multimodal networks in SZ and can be explained as a result
of between-group changes in clustering accompanied by abnormal hub
assignment in SZ (Alexander-Bloch et al., 2010; Bassett et al., 2008;
Fornito et al., 2012) or altered small-worldness observed within the PFC
and parietal cortices (Liu et al., 2008). In other words, the shift in the
location of hub nodes in a network will alter overall network organiza-
tion (i.e. small-worldness), which Bassett et al. (2008) have shown to
subsequently increase assortativity in SZ patients.

4.3. Limitations and future directions

One drawback of the NBS is the large number of comparisons that
must be performed and the need for conservative thresholding to
protect against type I error. This, together with a potentially low
contrast-to-noise ratio from RiSE and DPX task conditions, raises the
possibility that with our sample sizes mass-univariate testing may not
offer sufficient power, a potential explanation to negative NBS task
effect findings for RiSE Encoding. Additionally, a previous study using
the same dataset identified site differences in data quality present for
absolute motion, relative motion, and temporal SNR (Ragland et al.,
2015). Notably, no group-by-site interactions were present in that or in
the present study. A benefit of this multisite design is that it increases
generalizability of results to the larger SZ population and demonstrates
that individuals with different demographic and clinical characteristics
are capable of completing the fMRI tasks analyzed.

It is also important to consider that graph theory findings using the
assortativity, global efficiency, and transitivity metrics may be circular
given that certain topological properties may influence the measure-
ment of other metrics (Rubinov, 2016). While the focus of circular
measures was in regard to modularity, hubs, and rich-club nodes,
minimal ensuing effects may still remain. Given that the NBS identified
significantly reduced functional connectivity in patients, the propor-
tional thresholding approach used in examining network topology
likely include weaker connections compared to controls. Considering
that BCT metric effects were observed across a range of thresholds, we
feel that our findings still contribute meaningful information about
functional network organization supporting cognitive control proces-
sing.

The majority of our patients were treated with antipsychotic
medications. Prior studies by our group and others argue against
medication effects as a major contribution to our findings and have
shown that reduced BOLD signal in the prefrontal cortex during higher-
order cognitive control is not due to antipsychotic drugs (Honey et al.,
1999; Snitz et al., 2005). Furthermore, a previous fMRI study in a
different sample of patients using the AX-CPT and a seed based beta
series connectivity analysis found no differences between medicated
and un-medicated SZ patients (Yoon et al., 2008).

Another caveat is that this study did not explore the specificity of
FPN changes to schizophrenia. This is important because other condi-
tions have also been characterized by changes in this network during
cognitively demanding tasks, including attention-deficit hyperactivity
disorder and chronic pain (Diamond, 2005; Mao et al., 2014). There-
fore, it will be important in future studies to determine which aspects of
cognitive control are related specifically to schizophrenia, and which
are related to poor attention or distractibility more generally.

Finally, we did not investigate motivation or effort during all
aspects of task performance in this study, and therefore on the degree
to which group differences associated with cognitive control may be
due to less effort or less valuation of the task by patients. However, the
DPX task does have a built in control for these versions of the
generalized deficit and behavioral data suggest a specific deficit in
cognitive control rather than simply a change in motivation.
Nonetheless it will be important to examine these issues in future
studies because positive emotional valuation, and greater experience of
reward during task performance may lead to greater activation of the
cognitive control network (Botvinick and Braver, 2015; Dixon, 2015;
Paschke et al., 2015). Because it is well known that schizophrenia
patients are characterized by reduced intrinsic motivation for many
tasks, and reduced response to positive reward (Silverstein, 2010;
Strauss et al., 2014a), it will also be important to determine if network
abnormalities observed in this study are robust to changes in motiva-
tional state.
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5. Conclusions

Cognitive control engages a set of neural mechanisms that manage
the complex set of demands that come with navigating day-to-day life.
The present findings provide new insights into the network connections
that are particularly crucial for cognitive control and the manner in
which brain networks reorganize to support such control. Our defined
FPN appears to undergo a context dependent restructuring that flexibly
and optimally facilitates cognitive control processing. Impairments in
this mechanism are particularly relevant for individuals with schizo-
phrenia and our findings further emphasize how dysfunction in
cognitive control contributes to the pathophysiology of higher cognitive
deficits in the disease. Moreover, the bilateral MTL, right DLPFC, left
precentral gyrus, and left anterior PFC appear to play a key role in
cognitive control deficits in SZ. A better understanding of the develop-
mental, cellular, and molecular processes underlying long range and
local circuit function in this set of regions may elucidate the pathophy-
siology of SZ and help accelerate novel psychopharmacologic and
cognitive training interventions.
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