718 research outputs found

    Optimization of double pulse pumping for Ni-like Sm x-ray lasers

    Get PDF
    We report a systematic study of double pulse pumping of the Ni-like Sm x-ray laser at 73 Angstrom, currently the shortest wavelength saturated x-ray laser. It is found that the Sm x-ray laser output can change by orders of magnitude when the intensity ratio of the pumping pulses and their relative delay are varied. Optimum pumping conditions are found and interpreted in terms of a simple model. (C) 1999 American Institute of Physics. [S0021-8979(99)07102-9]

    Soft matter science and the COVID-19 pandemic

    Get PDF
    Much of the science underpinning the global response to the COVID-19 pandemic lies in the soft matter domain. Coronaviruses are composite particles with a core of nucleic acids complexed to proteins surrounded by a protein-studded lipid bilayer shell. A dominant route for transmission is via air-borne aerosols and droplets. Viral interaction with polymeric body fluids, particularly mucus, and cell membranes control their infectivity, while their interaction with skin and artificial surfaces underpins cleaning and disinfection and the efficacy of masks and other personal protective equipment. The global response to COVID-19 has highlighted gaps in the soft matter knowledge base. We survey these gaps, especially as pertaining to the transmission of the disease, and suggest questions that can (and need to) be tackled, both in response to COVID-19 and to better prepare for future viral pandemics.Comment: 15 page

    Exoplanet Characterization and the Search for Life

    Full text link
    Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces with spectroscopy. Rocky planets within their star's habitable zones have the highest priority, as these have the potential to harbor life. Our science goal is to find and characterize all nearby exoplanets; this requires that we measure the mass, orbit, and spectroscopic signature of each one at visible and infrared wavelengths. The techniques for doing this are at hand today. Within the decade we could answer long-standing questions about the evolution and nature of other planetary systems, and we could search for clues as to whether life exists elsewhere in our galactic neighborhood.Comment: 7 pages, 2 figures, submitted to Astro2010 Decadal Revie

    Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization

    Get PDF
    Hydrochars were obtained after hydrous pyrolysis of a pine Kraft lignin using different reaction conditions (temperature, water content and residence time) and the residues were characterized through a wide range of analytical techniques including high-temperature rheometry, solid-state 13C nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and field emission scanning electron microscopy (FE-SEM). The results indicated that an increase in reaction temperature, an increase in residence time or a decrease in water content reduces the amount of fluid material in the residue. The hydrous pyrolysis conditions studied were not able to increase the maturation of lignin, which would result in an increase in the resolidification temperature, but reduced the amount of mineral matter in the hydrochar produced. On the other hand, the hydrochars obtained from pristine lignin, torrefied lignin (300 °C, 1 h) and their 50:50 wt.%/wt.% blend at temperatures of 350 °C after 6 h using 30 ml of water had lower ash contents (45%) is excessively high compared to that of the good coking coal (10%) and the micro-strength of the biocokes (R139%) and high microporous surface areas ( > 400 m2/g) of the biocokes and high alkalinity index of the lignins (>27%) compared to those of the coke (27% and 145 m2/g) and coal (0.6%), respectively. Furthermore, the biocoke derived from the hydrous pyrolysed torrefied lignin did not agglomerate, which could not be explained by changes in the chemical properties of the material and requires further investigation

    Inherent Variability in the Kinetics of Autocatalytic Protein Self-Assembly

    Get PDF
    In small volumes, the kinetics of filamentous protein self-assembly is expected to show significant variability, arising from intrinsic molecular noise. This is not accounted for in existing deterministic models. We introduce a simple stochastic model including nucleation and autocatalytic growth via elongation and fragmentation, which allows us to predict the effects of molecular noise on the kinetics of autocatalytic self-assembly. We derive an analytic expression for the lag-time distribution, which agrees well with experimental results for the fibrillation of bovine insulin. Our expression decomposes the lag time variability into contributions from primary nucleation and autocatalytic growth and reveals how each of these scales with the key kinetic parameters. Our analysis shows that significant lag-time variability can arise from both primary nucleation and from autocatalytic growth, and should provide a way to extract mechanistic information on early-stage aggregation from small-volume experiments.Comment: 5pp, 3 fig. + Supp. Mat. (7pp, 4 fig.), accepted for publication in PR

    Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge

    Get PDF
    The increasing awareness of the significance of microbial biofilms across different sectors is continuously revealing new areas of opportunity in the development of innovative technologies in translational research, which can address their detrimental effects, as well as exploit their benefits. Due to the extent of sectors affected by microbial biofilms, capturing their real financial impact has been difficult. This perspective highlights this impact globally, based on figures identified in a recent in-depth market analysis commissioned by the UK’s National Biofilms Innovation Centre (NBIC). The outputs from this analysis and the workshops organised by NBIC on its research strategic themes have revealed the breath of opportunities for translational research in microbial biofilms. However, there are still many outstanding scientific and technological challenges which must be addressed in order to catalyse these opportunities. This perspective discusses some of these challenges
    corecore