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Inherent variability in the kinetics of autocatalytic protein self-assembly

Juraj Szavits-Nossan,∗ Kym Eden,† Ryan J. Morris, Cait E. MacPhee, Martin R. Evans, and Rosalind J. Allen‡

SUPA, School of Physics and Astronomy, University of Edinburgh,

Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

In small volumes, the kinetics of filamentous protein self-assembly is expected to show significant
variability, arising from intrinsic molecular noise. This is not accounted for in existing deterministic
models. We introduce a simple stochastic model including nucleation and autocatalytic growth
via elongation and fragmentation, which allows us to predict the effects of molecular noise on the
kinetics of autocatalytic self-assembly. We derive an analytic expression for the lag-time distribution,
which agrees well with experimental results for the fibrillation of bovine insulin. Our expression
decomposes the lag time variability into contributions from primary nucleation and autocatalytic
growth and reveals how each of these scales with the key kinetic parameters. Our analysis shows
that significant lag-time variability can arise from both primary nucleation and from autocatalytic
growth, and should provide a way to extract mechanistic information on early-stage aggregation
from small-volume experiments.

PACS numbers: 87.14.em, 87.15.nr, 87.18.Tt, 05.10.Gg

The self-assembly of protein molecules into amyloid
fibrils is associated with many degenerative diseases [1],
but also presents potential opportunities for the develop-
ment of new materials [2]. In both cases it is of outstand-
ing importance to identify the specific microscopic steps
responsible for amyloid aggregation, especially in its early
stages. An important success of recent biophysical work
has been to show that in vitro kinetic data for amyloid
fibril self-assembly can often be described by determinis-
tic mechanistic models [3–11]. However, it is unclear how
far the results of these large-volume experiments can be
translated to clinically relevant intracellular aggregation
phenomena, which occur in far smaller volumes.

In large-volume in vitro experiments (typically 100-
1000 µl), measurements of the total mass of aggregated
(fibrillar) protein as a function of time typically produce
sigmoidal curves, as in figure 1(a) [2]. These data show
an initial lag phase in which no aggregated protein is
detectable, followed by a rapid growth phase, terminat-
ing in a plateau once all the protein is in the aggregated
form. In large volumes, these characteristic sigmoidal
growth curves can often be well fitted by deterministic ki-
netic models involving homogeneous primary nucleation
(Fig. 1(c), I), filament elongation by monomer addition
(Fig. 1(c), II) and autocatalysis via filament fragmenta-
tion (Fig. 1(c), III) [2, 7, 12–14] – although the contri-
butions of primary nucleation and autocatalytic growth
in the early stages of aggregation are often poorly dis-
tinguished [15]. Importantly, these models lead to an-
alytical predictions for scaling behavior; for example, if
autocatalysis is dominant, the mean lag time scales as
the inverse square root of the product of the protein con-
centration, elongation and fragmentation rates [7].

In a clinical context, however, fibril formation happens
in much smaller volumes, on the scale of a human cell
(typically 500− 3000 fl). In small volumes, the stochas-
tic nature of the underlying chemical reactions (“intrin-
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FIG. 1: (a) Experimental kinetic curve (black line) for the ag-
gregation of bovine insulin in a volume of 100 µl from our own
experiment, fitted to the theoretical prediction of a model [7]
involving primary nucleation, elongation and fragmentation
(dashed red line); for full experimental details, see the Sup-
plemental Material. (b) Kinetic curves obtained from kinetic
Monte Carlo simulations of a stochastic version of the same
model [7, 17] and the fit parameters extracted from (a), but
for a much smaller volume of 830 fl. (c) Schematic illustration
of: (I) primary nucleation, (II) elongation via polymerization
and (III) fragmentation. The critical nucleus size for primary
nucleation is denoted by nc.

sic molecular noise”) is expected to become important,
leading to inherent variability in the aggregation kinet-
ics. Fig. 1(b) shows the results of replicate kinetic Monte
Carlo simulations of a stochastic version of the autocat-
alytic growth model [17] in a volume of 830 fl. These
simulations predict significant variability in the lag time.
Lag-time variability has also been observed in recent pio-
neering experiments on bovine insulin fibril formation in
micro-droplets [18], as well as in classic small-volume ex-
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periments on the polymerization of sickle cell hemoglobin
[19–21]. Theoretical models which explain such data
should provide a powerful tool for probing the mecha-
nisms involved in early-stage aggregation. In particular,
an important question concerns the relative roles of pri-
mary nucleation (Fig. 1(c), I) and autocatalytic growth
(Fig. 1(c), II and III) in determining the lag-time dis-
tribution for amyloid fibril formation. So far, however,
analytic predictions for lag-time distributions have been
achieved only for models that do not fully take into ac-
count autocatalytic growth [22, 23].
In this paper, we present an analytic prediction for the

lag-time distribution, for a stochastic model of filamen-
tous protein self-assembly that includes primary nucle-
ation, irreversible filament elongation and autocatalysis
via fragmentation. We show that our prediction is in
agreement with recent data for bovine insulin fibril for-
mation in micro-droplets [18]. This analytical solution
allows a decomposition of the lag time variability into
contributions from primary nucleation and autocatalytic
growth, and reveals how each of these scales with the key
kinetic parameters.
A Coarse-Grained Model for Autocatalytic Protein

Self-Assembly. Deterministic kinetic models for amyloid
fibril self-assembly usually consist of dynamical equations
for the mean number of fibrils 〈ni〉 of a given length
i ≥ nc, where nc is the size of the smallest growth-
competent fibril (the “nucleus”) [2, 7, 12–14] [24]. For
a model including homogeneous nucleation, irreversible
elongation and fibril fragmentation (Fig. 1(c), I-III),
these equations are non-linear, but various approxima-
tions have been successfully employed to obtain their full
time-dependent solution [7, 12–14]. The stochastic ver-
sion of this model, where the number of each species ni is
allowed to fluctuate is, however, analytically intractable,
although it can be simulated numerically as we have done
in Fig. 1(b).
To obtain an analytic prediction for the lag-time dis-

tribution, we coarse-grain the model, while retaining the
key processes of nucleation, elongation and fragmenta-
tion. Rather than tracking the full distribution of fib-
ril lengths, we track only the total number of fibrils
n =

∑

i ni and the number of monomers in aggregates
m =

∑

i ini, but treat them as discrete random vari-
ables, which can fluctuate due to intrinsic noise. This
coarse-graining, which amounts essentially to summing
over fibril lengths in the full model [25], results in the
following set of possible transitions between states n,m
of the system:

n,m→











n+ 1,m+ nc at rate α[c(t)]/ǫ

n,m+ 1 at rate 2k+c(t)n

n+ 1,m at rate kfm

(1a)

(1b)

(1c)

Primary nucleation is modeled by (1a) as an one-step
process in which a new filament (called a “nucleus”) is

created instantaneously from nc free monomers at rate
α[c(t)]ǫ. The rate α is assumed to depend on the molar
concentration of free monomers c(t) and ǫ = 1/(V NA),
where V is the volume and NA is Avogadro’s constant.
Transition (1b) represents filament growth by monomer
addition at rate 2k+c(t); the factor of 2 accounts for the
fact that filaments can grow at both ends. Transition
(1c) represents fragmentation; this amounts to an auto-
catalytic creation of new fibrils from existing ones at rate
kf ; the probability that any given fibril breaks is assumed
to be proportional to its length. Although this assump-
tion is somewhat simplistic [26], we have also studied a
model where fibrils break more frequently at their ends
[27]. This latter model, which is presented in the Supple-
mental Material, also obeys detailed balance by including
backward reactions such as re-joining of fragmented fib-
rils and loss of monomers at fibril ends; however, none
of these changes were found to affect the early-stage ag-
gregation phenomena studied here [16, 28]. In the rest of
the paper we will further simplify the model by neglect-
ing monomer depletion, which amounts to approximating
the free monomer concentration c(t) by ctot ; this has lit-
tle effect on the lag phase.

The probability distribution Pn,m(t) for a given n and
m obeys the following master equation

d

dt
Pn,m = (α/ǫ)Pn−1,m−nc + µnPn,m−1

+ λmPn−1,m − (α/ǫ + µn+ λm)Pn,m,
(2)

where α ≡ α(ctot ), µ ≡ 2k+ctot and λ ≡ kf . Starting
with an initial condition Pn,m(0) = δn,n0δm,m0 , we aim
to solve for Pn,m(t), and then to find the probability dis-
tribution for the lag time, i.e. for the time needed for the
number of aggregated monomers m to reach some prede-
fined threshold mT , which we define as 10% of the total
number of monomers (which is given by ctot/ǫ, assuming
that ctot is measured in moles per unit volume).

Analytic Solution for the Probability Distribution Pn,m.

In order to obtain an analytic solution, we replace the
master equation (2) with a corresponding Fokker-Planck
equation via the linear noise approximation (LNA), also
known as Van Kampen’s system size expansion [29, 30].
The LNA assumes that n and m can be decomposed into
deterministic and fluctuating parts,

n = NAV φ(t) +
√

NAV x1 (3a)

m = NAV ψ(t) +
√

NAV x2, (3b)

where the fluctuating parts x1 and x2 are scaled by√
NAV , and are assumed to be small compared to the

deterministic terms. The deterministic parts φ(t) and
ψ(t), expressed in units of concentration (here moles per
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unit volume), solve the following differential equations:

dφ

dt
= λψ + α, φ(0) = ǫn0 ≡ φ0 (4a)

dψ

dt
= µφ+ αnc, ψ(0) = ǫm0 ≡ ψ0. (4b)

Equations (4a) and (4b) may be solved to yield

φ(t) =

√

λ

µ
Ψ0sinh(τ) + Φ0cosh(τ) −

αnc

µ
(5a)

ψ(t) =

√

µ

λ
Φ0sinh(τ) + Ψ0cosh(τ) −

α

λ
. (5b)

where we have adopted the following notation: τ =√
µλt, Φ0 = φ0 + αnc/µ and Ψ0 = ψ0 + α/λ. Equations

(5a) and (5b) describe the time evolution of the mean
concentrations of fibrils and aggregated protein, respec-
tively, at early times. Solving ψ(T ) = mT ǫ, where mT is
the threshold concentration, yields the mean lag time T

T =
1√
µλ

ln
D +

√

D2 − Ψ2
0 + (µ/λ)Φ2

0

Ψ0 +
√

µ/λΦ0

, (6)

where D = α/λ+mT ǫ. Eq. (6) is a good approximation
to the lag time reported in [7] and predicts the same
T ∝ (k+ctotkf )

−1/2 scaling.
To determine the effects of intrinsic noise, we now turn

to the fluctuating parts x1 and x2, which are governed by
the following Fokker-Planck equation for the probability
density P (x1, x2, t),

∂P

∂t
= −

∑

i

∂

∂xi
(AiP ) +

1

2

∑

i,j

∂2

∂xixj
(BijP ) (7)

where we assumed that P (x1, x2, 0) = δ(x1)δ(x2). The

drift vector ~A and the diffusion matrix B are given by

~A =

(

λx2
µx1

)

, B =

(

λψ + α αnc

αnc µφ+ αn2
c

)

. (8)

Equation (7) describes a two-variable (time-dependent)
Ornstein-Uhlenbeck process which can be solved by stan-
dard techniques [30] and yields a bivariate Gaussian dis-
tribution with zero mean and time-dependent covariance
matrix Σij = 〈xixj〉. To calculate the lag time distri-
bution we only need to know Σ22 = 〈x2(t)2〉; the time-
dependence of the other matrix elements can be found in
the Supplemental Material.
Lag Time Distribution. Building on these results, we

now obtain an analytic expression for the lag time dis-
tribution L(t). This is essentially a first-passage time
problem; to calculate L(t), we look for all events such
that m has just exceeded mT at a time t, given that it
will exceed mT eventually,

L(t) =
d
dtProb[m > mT , t]

Prob[m > mT , t→ ∞]
. (9)

The probability Prob[m > mT , t] can easily be calculated
by integrating P (x1, x2, t) and reads

Prob[m > mT , t] =
1

2
erfc

(

mT ǫ− ψ(t)
√

2ǫ〈x2(t)2〉

)

, (10)

A lengthy but straightforward calculation for 〈x2(t)2〉
gives

〈x2(t)2〉 = cosh(2τ)

[

1

6

(

Φ0
µ

λ
+Ψ0

)

+
αnc

2λ

]

+ sinh(2τ)

√

µ

λ

[

Φ0 +Ψ0

3
+
αnc(nc − 1)

4µ

]

+
coshτ

3λ
(λΨ0 − 2µΦ0) +

sinhτ

3

√

µ

λ
(Φ0 − 2Ψ0)

− αnc(nc − 1)t

2
+

1

2

(

Φ0

√

µ

λ
−Ψ0 −

αnc

λ

)

.

(11)

It now proves useful to introduce a new variable r(t),

r(t) =
ψ(t) −mT ǫ
√

ǫ〈x2(t)2〉
(12)

which measures the deviation of the mean fibril concen-
tration (ψ(t)) from the threshold (mT ǫ), scaled by the
root mean square of mǫ − ψ(t). Using this variable, we
combine expressions (9), (10) and (11) to give our central
result: an analytical expression for the lag time distri-
bution in the linear noise approximation of the master
equation (2), which takes the form of a Gaussian in r in
the range −∞ < r < r(∞) [25],

L(t)dt =
dr/dt√
2πZ

e−
r(t)2

2 dt =
1√
2πZ

e−
r2

2 dr, (13)

where Z = erfc(−r(∞)/2). Importantly, Eq. (13) allows
us to easily calculate moments of the lag time distribu-
tion. For example, to calculate the mean lag time 〈t〉 and
its standard deviation σ, we express t and t2 as functions
of r and perform a Taylor expansion around r = 0 (see
the Supplemental Material for details). This gives

〈t〉 ≈ T and σ ≈
√

ǫ〈x22(T )〉
µφ(T ) + αnc

. (14)

For most proteins, the fragmentation rate λ ≡ kf is much
smaller than the net fibril elongation rate µ ≡ 2k+ctot;
i.e. λ ≪ µ. If we also assume that no fibrils are present
at time t = 0 (φ0 = ψ0 = 0), we can write a simpler
expression for the standard deviation of the lag time,

σ =
(2/3)1/2

(µλ)1/4(αNAV )1/2
. (15)

Remarkably, Eq. (15) implies that the lag time variance
scales in a simple way with the model parameters. Like
the mean lag time, the variance is predicted to scale as
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√
µλ ∼

√

kfk+. Interestingly, however, the mean and
variance of the lag time may show different dependencies
on the protein concentration ctot; while the mean scales

as c
−1/2
tot , in expression (15) for the variance this factor

(which arises from µ) is multiplied by an additional factor
due to the ctot -dependent nucleation rate α; the scaling
of this factor depends on the nucleus size nc.

It is important to note that results (13)-(15) only hold
in the regime dominated by growth, where fluctuations
in n and m are much smaller than their averages, for
all times. In contrast, for slow nucleation rates, a sig-
nificant portion of the lag time is spent waiting for the
first nucleus to be spontaneously created, which is a
fluctuation-driven process. We take this into account by
convolving L(t − t′) with the waiting time distribution
(α/ǫ) exp(−αt′/ǫ) for the primary nucleation event, to
give

L1(t) = (α/ǫ)

∫ t

0

dt′e−(α/ǫ)t′L(t− t′), (16)

where in the expression for L(t− t′) we set φ(t′) = ǫ and
ψ(t′) = ncǫ (i.e. assume one fibril of size nc at time t′).
Figure 2 shows that the lag-time distributions predicted
by Eqs. (13) and (16) are in good agreement with the
results of stochastic simulations of the full model (which
takes into account fibril lengths), for several values of the
primary nucleation rate α. For relatively fast nucleation
rates, our “bare” LNA prediction L(t) (Eq. 13) is suffi-
cient (main plots in Figure 2); for slower nucleation rates
(inset in Fig. 2)), (16) should be used instead (inset to
Fig. 2).
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FIG. 2: The lag-time distribution L(t) for several values of
α, compared to that obtained by running 1000 independent
kinetic Monte Carlo simulations of the full stochastic model
(in which individual fibril lengths are resolved) [17]. From left
to right: α = 50 (full line), 5 (dashed line), 1.5 (dot-dashed
line), all in units of 10−15 mol/(ls). Inset: L1(t) (dashed line)
compared to simulations for α = 5 ·10−17 mol/(ls). The other
parameters are: V = 830 fl, MT = 10% of ctot , ctot = 100
µmol/l, nc = 2, k+ = 5 · 104 l/(mol s) and kf = 3 · 10−8 s−1.

For slow nucleation rates, we can separate the contri-
butions of primary nucleation and autocatalytic growth

to the lag time variance in a simple way. Assuming L(t)
can be replaced by a Gaussian in t, we can use (14) to
compute the integral in (16) in a closed form which re-
veals that L1(t) has mean T1 and standard deviation σ1
given by

T1 =
ǫ

α
+ T, σ1 =

√

( ǫ

α

)2

+ σ2. (17)

Thus the lag-time variance is given by a simple sum of
the variance of the exponential waiting time distribution
for the primary nucleation event, and the contribution
from autocatalytic growth, given by Eq. (15).
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FIG. 3: (a) Volume dependence of the lag time for the aggre-
gation of bovine insulin in microdroplets of varying volume
(red dots) [18], compared to the mean (solid line) and the
standard deviation (error bars) from Eq. 17, using the fol-
lowing values, which were obtained from Ref. [18]: T = 104
min, α = 1/(1.7 · 10−7NA) mol/(l s), k+ = 8.9 · 104 l/(mol s),
kf = 2 · 10−8 s−1 and assuming nc = 2. (b) Corresponding
volume dependence of the standard deviation; the red dots
are 6-point moving standard deviation from the experimental
data, and the solid green line is from (17). (c) Theoretical
predictions for the standard deviation σ1 as a function of vol-
ume, relative to ǫ/α. The green (lower) lines correspond to
the protein concentration 30 mg/ml used in Ref. [18], while
the blue (upper) lines are for a higher protein concentration,
100 mg/ml, assuming that α(ctot ) ∝ ctot

nc [7]. In both cases,
the dashed lines correspond to (17) while the solid lines are
calculated numerically from (16).

Comparison with Experimental Results for Bovine In-

sulin. So far, the only available experimental data on
amyloid fibril nucleation in small volumes is that of
Knowles et al., who tracked the fibrillation of bovine in-
sulin in 52 micro-droplets of volumes in the range 10−300
pl, using ThT fluorescence [18]. Fig. 3(a) shows the re-
sulting lag times (red dots) as a function of droplet vol-
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ume, compared to our theoretical prediction; the green
line shows the mean lag time T1, and the error bars show
the standard deviation σ1, from Eq. (17). No fitting pa-
rameters were used in this plot; rather the parameters k+,
kf and α were taken directly from the measurements of
Ref. [18] [32]. While there are not enough experimental
data points to plot a lag-time distribution for any given
volume, Fig. 3(a) shows that the variability observed in
the experiments is consistent with our theory. This is
further evidenced in Fig. 3(b), where we plot directly
the volume-dependence of the standard deviation.
We can also use our result, Eq. (17), to explore the

relative contributions of primary nucleation and autocat-
alytic growth to the lag-time variability. Fig. 3(c) shows
our theoretical prediction for the standard deviation σ1,
relative to that for primary nucleation only, ǫ/α. The
relative contribution of autocatalytic growth increases
strongly as the volume increases (although the total vari-
ability decreases with V ). For the protein concentration
of 30 mg/ml used in Ref. [18], primary nucleation is the
main contributor. However, for higher protein concentra-
tions, we predict that autocatalytic variability becomes
significant even at smaller volumes, on the scale of a hu-
man cell.
Conclusion. We have presented an analytic expression

for the lag time distribution, for a stochastic model of
autocatalytic protein self-assembly which includes nucle-
ation, elongation and fragmentation. Our solution pro-
vides simple scaling relations for the contributions to lag-
time variability due to primary nucleation and autocatal-
ysis, both of which can be significant under realistic con-
ditions. The implications of molecular noise for variabil-
ity in clinical outcomes between individuals, as well as
the possible connection to variability between replicates
in large volume experiments [33] present interesting and
important directions for future work.
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Supplemental Material to:
Inherent variability in the kinetics of autocatalytic protein self-assembly

EXPERIMENTAL SETUP

To obtain the experimental data shown in Fig. 1(a), bovine insulin was obtained from Sigma-Aldrich (I55004, lot
number 0001434060). The zinc content was approximately 0.5% (w/w). The samples in this study were dissolved in
25 mM HCl (pH 1.6) immediately prior to the experiment. All solvents and solutions were filtered through a 0.22 µm
filter (Millipore). Concentrations were checked via UV-Vis absorption spectroscopy. ThT was added to each solution
to a final concentration of 20 µM. Experiments were conducted using Corning NBS 96-well plates (Corning 3641).
These plates are coated with a proprietary PEO-like hydrophilic coating which minimizes the interaction of protein
with the plates. It was found that using these plates significantly minimized the variability in the kinetics compared
to standard polystyrene microwell plates. Each well of the plate was filled with 100 µL of solution. Experiments were
replicated across 2-3 whole plates for each protein concentration. The plates were sealed with a plastic adhesive and
then incubated at 60◦ C. The kinetics of aggregation was followed via the binding of the fluorescent dye Thioflavin
T (ThT), which binds preferentially to the fibrillar form of the protein. Fluorescence readings were taken from the
bottom optic. The final number of individual experiments for a given protein concentration ranged from ∼ 140-200.
In total, 68 replicate kinetic curves at protein concentration of 0.75 mg/mL, at pH 1.6 and 60◦ C were used to

obtain the average growth curve in Fig. 1(a) (solid black line), which was then fitted to the theoretical prediction
from [7] (dashed red line)

M(t)

ctot
= 1− exp

{

− α

ctot

[

cosh(
√

2k+ctotkf )− 1
]

}

, (S1)

to obtain the kinetic parameters nc = 2, α = 5.8 · 10−16 mol/(l s), k+ = 5 · 104 l/(mol s) and kf = 3 · 10−8 s−1. These
parameters were used in the simulations of Fig. 1(b).

FULL STOCHASTIC MODEL INVOLVING NUCLEATION, ELONGATION AND FRAGMENTATION

The full stochastic model [17] tracks the number of fibrils ni for each fibril length i ≥ nc, where nc is the size of the
smallest stable fibril. The state of the system is then fully described by the collection of integers {nnc , nnc+1 . . . , }.
The master equation that governs the time evolution for the probability P ({ni}, t) to find the system in a state

{ni} is then given by

d

dt
P ({ni}) =

α(c(t) + ncǫ)

ǫ
θ(nnc − 1)P ({nnc − 1, . . . })− α(c(t))

ǫ
P ({ni})

+ 2k+(c(t) + ǫ)
∑

i≥nc

(ni + 1)P (. . . , ni + 1, ni+1 − 1, . . . )θ(ni + 1)θ(ni+1 − 1)

− 2k+c(t)
∑

i≥nc

niP ({ni}) + fragmentation terms

(S2)

Here, c(t) is the molar concentration of free monomers, c(t) = ctot −
∑

i≥nc
iniǫ, where ctot is the initial monomer

concentration, ǫ = 1/(V NA), V is the volume and NA is Avogadro’s constant; to account for the allowed transitions
between the states, we used the Heaviside step function θ(n) which equals 0 for n < 0 and 1 for n ≥ 0. The first
two terms in Eq. (S2) describe nucleation, the next two elongation and the rest of terms, which we will write below,
describe fragmentation.
Now, let us define the total number of fibrils n and the number of monomers in aggregates m, respectively,

n =
∑

i≥nc

ni, m =
∑

i≥nc

ini.

The probability P (n,m, t) to find the system with a particular n andm at time t can be obtained by summing P ({ni})
over all states {ni} having

∑

i≥nc
= n and

∑

i≥nc
ini = m, i.e.

P (n,m, t) =
∑

{ni}
P ({ni})δ(n−

∑

i≥nc

ni)δ(m−
∑

i≥nc

ini), (S3)
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where δ(i, j) denotes the Kronecker delta function.
In Eq. (S2), the nucleation and elongation terms both contain the number of free monomers c(t), which is state-

dependent. As we are interested in early times only, we can ignore monomer depletion and approximate c(t) with
ctot . From there it is straightforward to obtain the master equation for P (n,m, t), which reads

d

dt
P (n,m, t) = (α/ǫ)P (n− 1,m− nc, t)− (α/ǫ)P (n,m, t) + 2k+ctotnP (n,m− 1)

− 2k+ctotnP (n,m) + fragmentation terms,
(S4)

where we have used the notation α ≡ α(ctot ).
To write the fragmentation terms, we have to distinguish between fibrils of length nc ≤ i ≤ 2nc − 1 and i ≥ 2nc.

These two cases differ in the possible ways a fibril can be broken, taking into account the fact that the smallest stable
fibril unit has length nc. If a fibril of length nc ≤ i < 2nc breaks into two fibrils, then at least one of them must be
unstable, and therefore will dissolve. On the other hand, if a fibril of length i ≥ 2nc breaks into two fibrils, at least
one of them must be stable. That said, we can write the fragmentation terms on the r.h.s. of the master equation
(S2) as

fragmentation terms =

2nc−1
∑

i=nc

i−nc
∑

k=1

kf (ni + 1)P (. . . , ni−k − 1, . . . , ni + 1, . . . )θ(ni−k − 1)

+

2nc−1
∑

i=nc

i−1
∑

k=nc

kf (ni + 1)P (. . . , nk − 1, . . . , ni + 1, . . . )θ(nk − 1)

+
∑

i≥2nc

nc−1
∑

k=1

kf (ni + 1)P (. . . , ni−k + 1, . . . , ni + 1, . . . )θ(ni−k − 1)

+
∑

i≥2nc

i−1
∑

k=i−nc+1

kf (ni + 1)P (. . . , ni−k + 1, . . . , ni + 1, . . . )θ(nk − 1)

+

2nc−2
∑

i=nc

nc−1
∑

k=i−nc+1

kf (ni + 1)P (. . . , ni + 1, . . . )

+
∑

i≥2nc

i−nc
∑

k=nc

kf (ni + 1)P (. . . , nk − 1, . . . , ni−k − 1, . . . , ni + 1, . . . )θ(nk − 1)θ(ni−k − 1)

−
∑

i≥nc

i
∑

k=1

kfniP ({ni})θ(ni − 1)

(S5)

The first four terms above describe fragmentation events which produce exactly one unstable fibril; the fifth and the
sixth term describe events that produce two unstable and two stable fibrils, respectively. Equation (S2) with the
fragmentation terms given in (S5) is the basis of our full stochastic model, which is then compared to the analytical
predictions of the simpler, coarse-grained model (in Fig. 2 of the main text).

COARSE-GRAINING THE FULL STOCHASTIC MODEL

To obtain our coarse-grained model, we ignore the occurrences of unstable fibrils. This yields the following master
equation for Pn,m(t) after summing (S2) and (S5) over all states {ni} with given n and m,

d

dt
P (n,m, t) = (α/ǫ)P (n− 1,m− nc, t)− (α/ǫ)P (n,m, t) + 2k+mtotnP (n,m− 1)

− 2k+ctotnP (n,m) + kf [m− (2nc − 1)(n− 1)]P (n− 1,m)− kf [m− (2nc − 1)n]P (n,m, t).
(S6)

Except for very early times, m is expected to be much larger than n, and so m− (2nc − 1)n can be approximated by
m. This leads to the following master equation,

d

dt
P (n,m, t) = (α/ǫ)P (n− 1,m− nc, t)− (α/ǫ)P (n,m, t) + 2k+ctotnP (n,m− 1)

− 2k+ctotnP (n,m) + kfmP (n− 1,m)− kfmP (n,m, t),
(S7)
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which is the subject of our theoretical analysis.

FULL STOCHASTIC MODEL RESPECTING DETAILED BALANCE

The coarse-grained model discussed in the text main text takes account of the following three chemical reactions:

ncm
kn−→ Fnc , (S8)

m+ Fi
k+−−→ Fi+1, i ≥ nc, (S9)

Fi+j
kf−→ Fi + Fj , i, j ≥ nc, (S10)

where m denotes a monomer and Fi a fibril of length i. This reaction scheme does not obey detailed balance. To
extend our scheme so that it does obey detailed balance, we add the following ’backward’ processes

Fnc
kd−→ ncm, (S11)

Fi+1
k−−−→ m+ Fi, i ≥ nc, (S12)

Fi + Fj
kc−→ Fi+j , i, j ≥ nc, (S13)

which represent disintegration, depolymerization and fibril coalescence (end-joining), respectively. Here we assume
length-independent kernels for the fragmentation and coalescence processes, which is true for rate-limited reactions.
However, reactions (S10) and (S12) together can be understood as an example of inhomogeneous fragmentation in
which a fibril is more likely to break at its ends (k− > kf ). In particular, we set k− = κkf , where κ ≈ 1.1 is chosen
in accordance with a recent theoretical study on rupture probabilities along a single polymer chain [27].
The rate equations for the processes (S8)-(S13) read

d

dt
ρ1 = (nckdρnc − ncknρ

nc
1 ) +

∞
∑

j=nc

(2k−ρj+1 − 2k+ρ1ρj) , (S14)

d

dt
ρnc = (knρ

nc
1 − kdρnc) + (2k−ρnc+1 − 2k+ρ1ρnc)

+

∞
∑

j=nc

(2kfρnc+j − 2kcρncρj) , (S15)

d

dt
ρi = (2k+ρ1ρi−1 − 2k−ρi) + (2k−ρi+1 − 2k+ρ1ρi)

+

∞
∑

j=nc

(2kfρi+j − 2kcρiρj) +

i−nc
∑

j=nc

(kcρiρi−j − kfρi) , i ≥ nc + 1 (S16)

where ρ1 denotes the monomer concentration and ρi denotes the concentration of fibrils of length i (all in units of
molar).
Detailed balance can then be implemented by demanding that each of the terms in parentheses vanishes for the

equilibrium concentrations ρeq1 and ρeqi for i ≥ nc:

kdρ
eq
nc = kn(ρ

eq
1 )nc (S17)

k−ρ
eq
i+1 = k+ρ

eq
1 ρ

eq
i , i ≥ nc (S18)

kfρ
eq
i+j = kcρ

eq
i ρ

eq
j , i, j,≥ nc. (S19)

These equations have the following steady-state solution for i ≥ nc

ρeqi =
kn(ρ

eq
1 )nc

kd

(

k+ρ
eq
1

k−

)i−nc

, i ≥ nc (S20)

provided that

kc = kf
kd
kn

(

k+
k−

)nc

. (S21)



9

From conservation of mass, ρeq1 +
∑∞

i=nc
iρeqi = ctot , we also have that

[

kn(ρ
eq
1 )nc

kd

] [

nc

1− k+ρ
eq
1 /k−

+
k+ρ

eq
1 /k−

(1− k+ρ
eq
1 /k−)

2

]

= ctot − ρ1, (S22)

which can be used to determine kd, yielding

kd =

[

kn(ρ
eq
1 )nc

ctot − ρ1

] [

nc

1− k+ρ
eq
1 /k−

+
k+ρ

eq
1 /k−

(1− k+ρ
eq
1 /k−)

2

]

. (S23)

The only remaining unknown parameter is ρeq1 , which can be related to l̄, the mean fibril length in equilibrium, by

l̄ =

∑∞
i=nc

iρeqi
∑∞

i=nc
ρeqi

= nc +
k+ρ

eq
1 /k−

1− k+ρ
eq
1 /k−

, (S24)

yielding

ρeq1 =
k−
k+

l̄ − nc

l̄ − nc + 1
. (S25)
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FIG. S1: The lag time distribution for several values of kn for the model including inhomogeneous fragmentation and respecting
detailed balance, compared to the original model including nucleation, elongation and (homogeneous) fragmentation only; all
the results were obtained by running 1000 independent kinetic Monte Carlo simulations (using the same random number
generator’s seeds for both models); see the text below for the values of the other parameters.

Numerical simulations for the stochastic model given by reactions (S8)-(S13) were performed using the Gillespie
algorithm for several nucleation rate constants kn that yield the same values of α as in Fig. 2 in the main text, using
the relationship α = knc

nc
tot

; the parameters V = 830 fl, MT = 10% of ctot , ctot = 100 µmol/l, nc = 2, k+ = 5 · 104
l/(mol s) and kf = 3 · 10−8 s−1 were also taken from Fig. 2 in the main text; in addition, the depolymerization rate
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was set to k− = 1.1kf = 3.3 · 10−8 s−1; the value for ρ1 = 6.6 · 10−13 mol/l was obtained using (S25) and setting l̄ to
1000; finally, the coalescence and disintegration rates were calculated using (S21) and (S23) respectively for each of
the nucleation rate constants.

Results for the lag time distribution are presented in Fig. S1 for the model which includes inhomogeneous fragmen-
tation and respects detailed balance (dashed lines), compared to those for the model analysed in the main text, which
assumes homogeneous fragmentation and lacks detailed balance (solid lines). In all four cases the difference between
the results of the two models is very small, showing that the effect of inhomogeneous fragmentation and backward
processes on the early-time aggregation is negligible. Therefore, the model studied in the main text (Eq. (1)) can
safely be used even though it assumes homogeneous fragmentation and neglects detailed balance.

COVARIANCE MATRIX Σ(t)

For completeness, we list here the other matrix elements of Σ(t), 〈x1(t)2〉 and 〈x1(t)x2(v)〉, respectively,

〈x1(t)2〉 = cosh(2τ)

[

1

6

(

Φ0 +Ψ0
λ

µ

)

+
αnc

2µ

]

+ sinh(2τ)

√

λ

µ

[

Φ0 +Ψ0

3
+
αnc(nc − 1)

4µ

]

+
coshτ

3µ
(µΦ0 − 2λΨ0) +

sinhτ

3

√

λ

µ
(Ψ0 − 2Φ0)−

λ

µ

αnc(nc − 1)t

2
+

1

2

(

Ψ0
λ

µ
− Φ0 −

αnc

µ

)

, (S26)

〈x1(t)x2(t)〉 =
√

λ

µ

{

cosh(2τ)

√

λ

µ

Φ0 +Ψ0

3
+ sinh(2τ)

[

1

6

(

Φ0 + Ψ0
λ

µ

)

+
αnc

2µ

]

− coshτ

3

√

λ

µ
(Φ0 +Ψ0)−

sinhτ

3µ
(µΦ0 + λΨ0)

}

. (S27)

CALCULATION OF THE LAG-TIME DISTRIBUTION L(t)

to calculate L(t), we first need to find the probability that m > mT at time t, which is given by

Prob[m > mT , t] =

∫ ∞

−∞
dx1

∫ ∞

mT ǫ−ψ(t)
√
ǫ

dx2P (~x, t). (S28)

Here P (~x, t) is a bivariate Gaussian distribution with zero mean and covariance matrix Σ,

P (~x, t) =
1

2π
√
detΣ

e−
1
2~x
TΣ−1~x, Σ =

(

〈x1(t)2〉 〈x1(t)x2(t)〉
〈x1(t)x2(t)〉 〈x2(t)2〉

)

. (S29)

The argument of the exponential function in (S29) can be expanded as

~xTΣ−1~x =
Σ22x

2
1 − 2Σ12x1x2 +Σ11x

2
1

detΣ

=
Σ22

(

x1 − Σ11

Σ22
x2

)2

detΣ
+

1

Σ22
x22. (S30)

The integral over x1 can be easily performed and gives

∫ ∞

−∞
dx1 exp

[

− Σ22

2detΣ

(

x1 −
Σ12

Σ22
x2

)2
]

=

√

2πdetΣ

Σ22
, (S31)
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while the integral over x2 can be expressed using the complementary error function

Prob[m > mT , t] =
1

2π
√
detΣ

√

2πdetΣ

Σ22

∫ ∞

mT ǫ−ψ(t)
√
ǫ

dx2e
− 1

2Σ22
x2
2

=
1√
π

∫

mtǫ−ψ(t)√
2ǫΣ22

dye−y2

=
1

2
erfc

(

mtǫ− ψ(t)√
2ǫΣ22

)

. (S32)

Note that our result for Prob[m > mT , t] predicts that in general Prob[m > mT ,∞] 6= 1, i.e. not all trajectories will
reach the threshold mT . We thus have to count only the trajectories where m will reach mT eventually; this amounts
to rescaling Prob[m > mT , t] with Prob[m > mT ,∞].
To find the lag-time distribution L(t), let us look at the probability that m > mT at time t + dt. To find this

probability we have to count all events for which m > mT at time t, plus all the events where m has reached mT in
the time interval [t, t+ dt]. We can thus write

Prob[m > mT , t+ dt]

Prob[m > mT ,∞]
=

Prob[m > mT , t]

Prob[m > mT ,∞]
+ L(t)dt, (S33)

from which it follows that

L(t) =
d
dtProb[m > mT , t]

Prob[m > mT ,∞]
. (S34)

MOMENTS OF THE LAG-TIME DISTRIBUTION L(t)

In the main text we defined a new variable r

r =
ψ(t)−mT ǫ
√

ǫ〈x2(t)2〉
, (S35)

such that the lag time distribution L(t) becomes a Gaussian in r,

L(t)dt =
dr/dt√
2πZ

e−r(t)2/2 =
1√
2πZ

e−r2/2dr. (S36)

Here r takes values in the range 〈−∞, r(∞)], where r(∞) is given by

r(∞) =
Ψ0 + (µ/λ)Φ0

√

ǫ{[Ψ0 + (µ/λ)Φ0]/3 + αnc/λ+
√

µ/λ[(Ψ0 +Φ0)/3 + αnc(nc − 1)/(2µ)]}
. (S37)

To calculate an average of some physical quantity w(t), we can make a change of variable from t to r,

〈w(t)〉 =
∫ ∞

0

dtw(t)L(t) =
1√
2πZ

∫ r(∞)

−∞
drw(r)e−r2/2. (S38)

To complete the calculation, we have to express t as a function of r so that w(r) = w(t(r)). However, the final
integral in (S38) is unlikely to be analytically tractable, and thus we take a different approach. Using the fact that
r(t = T ) = 0, we can make a Taylor expansion of w(t(r)) around r = 0,

w(t(r)) = w(r) =
∞
∑

k=0

w(k)(r = 0)

k!
rk, (S39)

where w(k) is the k-th derivative with respect to r. Inserting the Taylor expansion (S39) in (S38) we get a formal
expression for 〈w(t)〉 as

〈w(t)〉 =
∞
∑

k=0

w(k)(r = 0)

k!
〈rk〉 (S40)
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where 〈rk〉 is given by

〈rk〉 = 2(k−1)/2

√
2πZ

[

(−1)kΓ

(

k + 1

2

)

+ γ

(

k + 1

2
,
r(∞)2

2

)]

. (S41)

Here Γ(z) and γ(z, x) are the gamma and lower incomplete gamma functions, respectively. For example, the first few
terms are:

〈r〉 = − 1√
2πZ

e−r(∞)2/2, 〈r2〉 = 1− r(∞)√
2πZ

e−r(∞)2/2. (S42)

For higher-order terms we can use the following recursion relation:

〈rk〉 = 〈rk−2〉 − r(∞)k−1

√
2πZ

e−r(∞)2/2, k ≥ 2, (S43)

which can be solved yielding

〈r2k〉 = 1 +
r(∞)〈r〉(1 − r(∞)2k)

1− r(∞)2
, k ≥ 0, (S44a)

〈r2k+1〉 = 〈r〉(1 − r(∞)2k+2)

1− r(∞)2
, k ≥ 0. (S44b)

To complete the calculation of 〈w(t)〉, we have to calculate the derivatives in (S39) with respect to r, evaluated at
t = T . These can be found using Faà di Bruno’s formula; for example, the first few terms are given by

w(1)(r = 0) = w(1)(t = T )t(1)(r = 0)

w(2)(r = 0) = w(2)(t = T )[t(1)(r = 0)]2 + w(1)(t = T )t(2)(r = 0)

w(3)(r = 0) = w(3)(t = T )[t(1)(r = 0)]3 + 3w(2)(t = T )t(1)(r = 0)t(2)(r = 0) + w(1)(t = T )t(3)(r = 0),

where the unknown derivatives t(k)(r = 0) can be calculated by setting w(t) = t.
By setting w(t) = t and w(t) = t2 − 〈t〉2 we get the following expressions for the mean and standard deviation,

respectively

〈t〉 = T − e−r(∞)2/2

√
2πZr(1)(T )

+

(

1− r(∞)e−r(∞)2/2

√
2πZ

)

r(2)(T )

2[r(1)(T )]3
+ . . . , (S45)

σ2 =
1

r(1)(T )

(

1− r(∞)e−r(∞)2/2

√
2πZ

)

[

1− Tr(2)(T )

r(1)(T )
+
Tr(2)(T )

[r(1)(T )]2

]

+ . . . , (S46)

where r(k)(T ) = φ(k)(T )/
√

ǫ〈x2(T )〉 for k ≥ 1.


