361 research outputs found

    Activities of public health nurses in a school health program

    Full text link
    Thesis (M.S.)--Boston University2031-01-0

    Temporal variation in bird assemblages: how representative is a one-year snapshot?

    Get PDF
    Bird assemblages generally are no longer regarded as stable entities, but rather as fluctuating in response to many factors. Australia’s highly variable climate is likely to result in a high degree of dynamism in its bird assemblages, yet few studies have investigated variation on an inter-annual temporal scale. We compared two year-long samples of the bird assemblages of a series of highly fragmented buloke Allocasuarina luehmannii (Casuarinaceae)woodland remnants in south-eastern Australia, the first sample taken in 1994–1995 and the second in 2001–2002. Bird densities were almost three times higher in the second period than in the first. Mean species richness also was significantly higher. Species richness of each individual site was unrelated between the two years. Minimum species turnover was 63% and was higher, on average, for migratory and nomadic than for sedentary species. Therefore, site-level bird assemblage composition was markedly different between the two survey periods and, on average, the assemblage composition of each site bore greater resemblance to those of other sites in the same year than to that of the same site in the other survey period. Most species changed substantially in their distribution among remnants between the two periods. The change in distribution of most species did not differ significantly from that expected if the species had redistributed at random among the sites. This suggests that although the remnant vegetation of the area is highly fragmented with minimal interpatch connectivity, bird movements among remnants must be relatively frequent. Interannual variability in Australian bird assemblages may be higher than is commonly recognized. In such dynamic systems, we must be cautious when extrapolating from the findings of short-term studies to longer temporal scales, especially in relation to conservation management. A greater understanding of the processes driving distributional patterns is likely to enable better predictions of species’ responses to habitat change

    Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons

    Get PDF
    Background: Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS) was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 ( a microglia and macrophage marker). Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation.Results: Application of LPS induced a gradient of inflammation through the full depth of the motor cortex and promoted c-Jun and SCG10 expression for up to 2 weeks, and GAP-43 upregulation for 3 days by many corticospinal neurons, but had very limited effects on neuronal ATF3 expression. However, many glial cells in the subcortical white matter upregulated ATF3. LPS did not promote sprouting of anterogradely labelled corticospinal axons, which did not grow into or beyond a cervical lesion site.Conclusion: Inflammation produced by topical application of LPS promoted increased expression of some growth-associated genes in the cell bodies of corticospinal neurons, but was insufficient to promote regeneration of the corticospinal tract

    Effects of two submerged macrophyte species on microbes and metazoans in rooftop water-storage ponds with different labile carbon loadings

    Get PDF
    Nature-based solutions including rooftop-water storage ponds are increasingly adopted in cities as new ecodesigns to address climate change issues, such as water scarcity and storm-water runoff. Macrophytes may be valuable additions for treating stored rooftop waters and provisioning other services, including aquaponics, esthetic and wildlife-conservation values. However, the efficacy of macrophyte treatments has not been tested with influxes of different labile carbon loadings such as those occurring in storms. Moreover, little is known about how macrophytes affect communities of metazoans and microbes, including protozoans, which are key players in the water-treatment process. Here, we experimentally investigated the effectiveness of two widely distributed macrophytes, Ceratophyllum demersum and Egeria densa, for treating drained rooftop water fed with two types of leaf litter, namely Quercus robur (high C lability) and Quercus rubra (low C lability). C. demersum was better than E. densa at reducing water conductivity (by 10̶ 40 μS/cm), TDS (by 10-18 mg/L), DOC (by 4-5 mg/L) and at increasing water transparency (by 4-9%), water O2 levels (by 19-27%) and daylight pH (by 0.9-1.3) compared to leaf-litter only microcosms after 30 days. Each treatment developed a different community of algae, protozoa and metazoa. Greater plant mass and epiphytic chlorophyll-a suggested that C. demersum was better at providing supporting habitat than E. densa. The two macrophytes did not differ in detritus accumulation, but E. densa was more prone to develop filamentous bacteria, which cause sludge bulking in water-treatment systems. Our study highlights the superior capacity of C. demersum and the usefulness of whole-ecosystem experiments in choosing the most adequate macrophyte species for nature-based engineered solutions

    The ecology and evolution of pangenomes

    Get PDF
    Since the first genome-scale comparisons, it has been evident that the genomes of many species are unbound by strict vertical descent: Large differences in gene content can occur among genomes belonging to the same prokaryotic species, with only a fraction of genes being universal to all genomes. These insights gave rise to the pangenome concept. The pangenome is defined as the set of all the genes present in a given species and can be subdivided into the accessory genome, present in only some of the genomes, and the core genome, present in all the genomes. Pangenomes arise due to gene gain by genomes from other species through horizontal gene transfer and differential gene loss among genomes, and have been described in both prokaryotes and eukaryotes. Our current view of pangenome variation is phenomenological and incomplete. In this review, we outline the mechanistic, ecological and evolutionary drivers of and barriers to horizontal gene transfer that are likely to structure pangenomes. We highlight the key role of conflict between the host chromosome(s) and the mobile genetic elements that mediate gene exchange. We identify shortcomings in our current models of pangenome evolution and suggest directions for future research to allow a more complete understanding of how and why pangenomes evolve

    Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers

    Get PDF
    Background: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). Methods: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. Results: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. Conclusion:GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.</p

    Signalling plasticity and energy saving in a tropical bushcricket

    Get PDF
    Males of the tropical bushcricket Mecopoda elongata synchronize their acoustic advertisement signals (chirps) in interactions with other males. However, synchrony is not perfect and distinct leader and follower roles are often maintained. In entrainment experiments in which conspecific signals were presented at various rates, chirps displayed as follower showed notable signal plasticity. Follower chirps were shortened by reducing the number and duration of syllables, especially those of low and medium amplitude. The degree of shortening depended on the time delay between leader and follower signals and the sound level of the entraining stimulus. The same signal plasticity was evident in male duets, with the effect that the last syllables of highest amplitude overlapped more strongly. Respiratory measurements showed that solo singing males producing higher chirp rates suffered from higher metabolic costs compared to males singing at lower rates. In contrast, respiratory rate was rather constant during a synchronous entrainment to a conspecific signal repeated at various rates. This allowed males to maintain a steady duty cycle, associated with a constant metabolic rate. Results are discussed with respect to the preference for leader signals in females and the possible benefits males may gain by overlapping their follower signals in a chorus
    corecore