57 research outputs found

    Multi-aperture beamforming for automated large structure inspection using ultrasonic phased arrays

    Get PDF
    Increasing the inspection quality and speed is essential in manufacturing applications, especially for large structures (e.g. modern aircrafts). Traditional ultrasonic manual scanning can be comprehensive, but lacks repeatability and is time-consuming. Several robotic non-destructive testing systems have been developed in recent years. Although high inspection rates have been achieved by the use of robotic arms, there is the need to furtherly increase the inspection speeds, to cope with the current industrial demands. For systems delivering robotic ultrasonic inspection through phased array probes, the current bottleneck is given by the time required to electrically fire all elements of the phased array probes, which limits the maximum scanning speed of the automated manipulators. This paper discusses the development of a multi-aperture beamforming method to focus the beam with multiple focusing points at a single firing. This work investigates this approach and the influence of different aperture excitations on the data quality. Experiments have been carried out using a 5MHz 32-element phased array probe manipulated by a KUKA robot. The results highlight the possibility to significantly improve the speed of automated inspection compared to linear beamforming, without compromising the inspection quality

    Off-line scan path planning for robotic NDT

    Get PDF
    This work presents computer-aided scan path generation for robotic non-destructive testing of complex shaped test-pieces. Off-line programmed scan path was used to robotically inspect an aluminium fixed leading edge skin panel of an aircraft wing by means of swept frequency eddy currents method. Eddy currents probe was deployed by means of a six-axis robotic arm KUKA KR5 arc. Reverse engineering of the test-piece was carried out to reconstruct CAD model of its surface. Positioning accuracy of the performed continuous scan was measured with a laser tracker in accordance with ISO 9283:1998 and is reported in the paper. The positional uncertainty of the NDT scan calculated as the standard deviation of the measured path coordinates from the command path coordinates does not exceed 0.5 mm which is rather moderate taking in account uncertainties associated with the off-line robot programming

    Assessing the accuracy of industrial robots through metrology for the enhancement of automated non-destructive testing

    Get PDF
    This work presents the study of the accuracy of an industrial robot KR5 arc HW, used to perform quality inspections of components with complex shapes. Metrology techniques such as laser tracking and large volume photogrammetry were deployed to quantify both pose and dynamic path accuracies of the robot in accordance with ISO 9283:1998. The overall positioning pose inaccuracy of the robot is found to be almost 1 mm and path inaccuracy at 100% of the robot rated velocity is 4.5 mm. The maximum pose orientation inaccuracy is found to be 14 degrees and the maximum path orientation inaccuracy is 5 degrees. Despite of the significant maximum inaccuracies, uncertainty of a robotic scanning application is estimated to be 0.5mm. Local positional errors manifest pronounced dependence on the position of the robot end effector in the working envelope. The uncertainties of the measurements are discussed and deemed to be caused by the tool center point calibration, the reference coordinate system transformation and the low accuracy of the photogrammetry system

    Spatial calibration of large volume photogrammetry based metrology systems

    Get PDF
    Photogrammetry systems are used extensively as volumetric measurement tools in a diverse range of applications including gait analysis, robotics and computer generated animation. For precision applications the spatial inaccuracies of these systems are of interest. In this paper, an experimental characterisation of a six camera Vicon T160 photogrammetry system using a high accuracy laser tracker is presented. The study was motivated by empirical observations of the accuracy of the photogrammetry system varying as a function of location within a measurement volume of approximately 100 m3. Error quantification was implemented through simultaneously tracking a target scanned through a sub-volume (27 m3) using both systems. The position of the target was measured at each point of a grid in four planes at different heights. In addition, the effect of the use of passive and active calibration artefacts upon system accuracy was investigated. A convex surface was obtained when considering error as a function of position for a fixed height setting confirming the empirical observations when using either calibration artefact. Average errors of 1.48 mm and 3.95 mm were obtained for the active and passive calibration artefacts respectively. However, it was found that through estimating and applying an unknown scale factor relating measurements, the overall accuracy could be improved with average errors reducing to 0.51 mm and 0.59 mm for the active and passive datasets respectively. The precision in the measurements was found to be less than 10 μm for each axis

    Deformed negative-parity excitations in 71 As

    Get PDF
    High-spin states in the neutron-deficient 71As nucleus have been studied using in-beam g -ray spectroscopic techniques combined with mass identification. A new decay sequence of negative parity has been assigned to 71As and previously known sequences have been extended to higher spin and excitation. The new sequence has been identified as originating from the proton f 7/2 extruder orbital, which approaches the Fermi surface at large prolate deformations. Comparisons of experimental B(M1)/B(E2) ratios to theoretical expectations support this interpretation

    Odd-even staggering in the πg9/2vg9/2 band in 72Br

    Get PDF
    High-spin positive-parity states in 72Br have been studied using the 16O+58Ni reaction. The πg9/2vg9/2 decoupled band in 72Br has been observed up to ∼10 MeV excitation energy and the expected odd-even staggering has been delineated. A larger signature splitting is observed for this band in 72Br than in the same collective structures in the heavier 74,76,78Br. No signature inversion at low spin is observed for this band in 72Br, in contrast to the heavier isotopes, 74,76,78Br, in which signature inversion is observed below ∼10(Latin small letter h with stroke sign). The observations are in general agreement with theoretical models in this mass region which predict no signature inversion for nuclei with less than 39 protons and neutrons

    Mouse Chromosome 3

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46995/1/335_2004_Article_BF00648421.pd

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Role for parasite genetic diversity in differential host responses to <i>Trypanosoma brucei</i> infection

    Get PDF
    The postgenomic era has revolutionized approaches to defining host-pathogen interactions and the investigation of the influence of genetic variation in either protagonist upon infection outcome. We analyzed pathology induced by infection with two genetically distinct Trypanosoma brucei strains and found that pathogenesis is partly strain specific, involving distinct host mechanisms. Infections of BALB/c mice with one strain (927) resulted in more severe anemia and greater erythropoietin production compared to infections with the second strain (247), which, contrastingly, produced greater splenomegaly and reticulocytosis. Plasma interleukin-10 (IL-10) and gamma interferon levels were significantly higher in strain 927-infected mice, whereas IL-12 was higher in strain 247-infected mice. To define mechanisms underlying these differences, expression microarray analysis of host genes in the spleen at day 10 postinfection was undertaken. Rank product analysis (RPA) showed that 40% of the significantly differentially expressed genes were specific to infection with one or the other trypanosome strain. RPA and pathway analysis identified LXR/RXR signaling, IL-10 signaling, and alternative macrophage activation as the most significantly differentially activated host processes. These data suggest that innate immune response modulation is a key determinant in trypanosome infections, the pattern of which can vary, dependent upon the trypanosome strain. This strongly suggests that a parasite genetic component is responsible for causing disease in the host. Our understanding of trypanosome infections is largely based on studies involving single parasite strains, and our results suggest that an integrated host-parasite approach is required for future studies on trypanosome pathogenesis. Furthermore, it is necessary to incorporate parasite variation into both experimental systems and models of pathogenesis
    corecore