643 research outputs found

    The Effect of Aquifer/Caprock Interface on Geological Storage of CO2

    Get PDF
    AbstractThe migration of CO2 stored in deep saline aquifers depends on the morphology of the top of the aquifer. Topographical highs, such as anticlines, may trap CO2 and limit the distance migrated, or elevated ridges may provide pathways enabling CO2 to migrate further from the injector. For example, seismic data of the Utsira formation at the Sleipner storage site indicates that a branch of the CO2 plume is moving to the north [1]. It is therefore important to study the interface between the aquifer and the caprock when assessing risk as CO2 storage sites.Undulations in the top surface of an aquifer may either be caused by sedimentary structures [2], or by folding. In addition, irregularities may be generated by faulting [2]. Large-scale features are detected using seismic data (i.e. structures with amplitudes greater than 10 m), and such structures will generally be included in reservoir or aquifer models. However, smaller- scale features could also have an effect on a CO2 plume migration, and this is the topic of our study. We have conducted simulations in models with a range of top-surface morphology, and have examined the distance migrated and the amount of dissolution.The results from this study suggest that the effects of sub-seismic variations in the topography of the aquifer/caprock interface are unlikely to have a significant impact on the migration and dissolution of CO2 in a saline aquifer, compared with tilt or permeability anisotropy. The results were most sensitive to the kv/kh ratio during the injection period

    A criteria-driven approach to the CO2 storage site selection of East Mey for the acorn project in the North Sea

    Get PDF
    Carbon Capture and Storage (CCS) is an essential tool in the fight against climate change. Any prospective storage site must meet various criteria that ensure the effectiveness, safety and economic viability of the storage operations. Finding the most suitable site for the storage of the captured CO2 is an essential part of the CCS chain of activity. This work addresses the site selection of a second site for the Acorn CCS project, a project designed to develop a scalable, full-chain CCS project in the North Sea (offshore northeast Scotland). This secondary site has been designed to serve as a backup and upscaling option for the Acorn Site, and has to satisfy pivotal project requirements such as low cost and high storage potential. The methodology followed included the filtering of 113 input sites from the UK CO2Stored database, according to general and project-specific criteria in a multi-staged approach. This criteria-driven workflow allowed for an early filtering out of the less suitable sites, followed by a more comprehensive comparison and ranking of the 15 most suitable sites. A due diligence assessment was conducted of the top six shortlisted sites to produce detailed assessment of their storage properties and suitability, including new geological interpretation and capacity calculations for each site. With the new knowledge generated during this process, a critical comparison of the sites led to selection of East Mey as the most suitable site, due to its outstanding storage characteristics and long-lasting hydrocarbon-production history, that ensure excellent data availability to risk-assess storage structures. A workshop session was held to present methods and results to independent stakeholders; feedback informed the final selection criteria. This paper provides an example of a criteria-driven approach to site selection that can be applied elsewhere.Project ACT-Acorn is gratefully thanked for funding this study. ACT Acorn, project 271500, received funding from BEIS (UK), RCN (Norway) and RVO (Netherland), and was co-funded by the European Commission under the ERA-Net instrument of the Horizon 2020 programme. ACT Grant number 691712. J. Alcalde is funded by MICINN (Juan de la Cierva fellowship - IJC2018-036074-I). S. Ghanbari is currently supported by the Energi Simulation. Energi Simulation is also thanked for funding the chair in reactive transport simulation held by E. Mackay.Peer reviewe

    Impact of Maximum Allowable Cost on CO 2

    Full text link

    Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress

    Get PDF
    A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment
    corecore