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Abstract 54 

In this proposed CO2 injection system, brine is extracted from the target storage aquifer by 55 

means of a lateral horizontal completion located near the top of the formation. It should be 56 

noted that the brine is not lifted to the surface. An Electrical Submersible Pump (ESP) is used 57 

to extract the brine and boost its pressure, before it is mixed with CO2 that is injected down 58 

the vertical section of the well. The mixing takes place in the vertical section of the well 59 

below the upper lateral. The CO2 – brine mix is then injected into the same formation through 60 

a lower lateral. A down-hole tool would be used to maximise agitation and contact area 61 

between CO2 and brine in the vertical mixing section of the well, which may be tens to 62 

hundreds of metres long, depending on the thickness of the formation. 63 

The advantages of this method are that there is little overall pressure increase, because CO2 is 64 

mixed with brine extracted from the formation, and also the extracted brine is already at high 65 

pressure when it is mixed with the CO2, greatly increasing the solubility of CO2 and reducing 66 

the volume of brine required. Energy is not expended lifting the brine to surface nor is there 67 

any concern about handling large volumes of acidic brine in the surface equipment. In this 68 

study, in addition to the concept of the down-hole mixing (DHM) method which is presented, 69 

the application of the DHM method in a hypothetical storage site (Lincolnshire – Smith et al., 70 

2012) is also examined. The calculations are performed to identify the optimum rates of 71 

water extraction and injection of dissolved CO2 in brine.  72 

Introduction: 73 

Since the industrial revolution, the CO2 concentration in the atmosphere has increased by 74 

45% (Celia et al., 2015). At the current time, it is believed that carbon capture and storage 75 

(CCS) can play a significant role in reducing the increase in the CO2 concentration in the 76 

atmosphere (Haszeldine, 2009). In the long term, several trapping mechanisms such as 77 

structural and stratigraphic trapping, residual trapping, solubility trapping and mineral 78 

trapping can be used to sequester supercritical CO2 into the aquifers or depleted reservoirs 79 

(Benson and Cole 2008). Structural trapping to prevent upward migration of CO2 is provided 80 

by a very low permeability layer, which is frequently a clay or shale layer, at the top of the 81 

storage formation. Safe long-term CO2 storage has been one of the most important issues, in 82 



terms of environmental damage that could be caused by leakage (Gasda et al., 2004; 83 

Nordbotten et al., 2005; Burton and Bryant 2009; Celia et al. 2011; Bachu and Celia 2009). 84 

Therefore long-term monitoring needs to be carried out (Mathieson et al., 2011), which 85 

increases the total cost of CO2 storage. 86 

Furthermore, due to the complexity of fully understanding the interface between 87 

caprock/aquifer, and the risk of CO2 leakage through caprock as a result of pressure build-up 88 

at the interface between aquifer/caprock (Shariatipour et al., 2012, 2014; Newell and 89 

Shariatipour 2016), the development of novel methods in which CO2 injected into aquifers 90 

does not migrate toward the interface is desirable.  In this paper an engineering method for 91 

CO2 injection in which CO2 is dissolved in brine down-hole is presented.  If we can minimize 92 

the vertical migration of CO2 in the reservoir, then it increases the safety in terms of any 93 

possible leakage through existing fractures and faults or fractures arising due to CO2 94 

injection. Injecting dissolved CO2 could not only prevent buoyant vertical migration of CO2, 95 

but it could also lead to dissolved CO2 sinking in the reservoir, as brine with dissolved CO2 is 96 

denser (around 1%) than formation brine (Ennis-King and Paterson, 2003, Ennis-King et al., 97 

2005, Riaz et al., 2006). 98 

In many carbon capture and storage (CCS) research projects that have been published 99 

(Kumar et al., 2005; Burton and Bryant 2009; Anchliya et al., 2012 and more), one of the 100 

main concerns the authors have addressed is the security of CO2 storage.  Several engineering 101 

techniques have been suggested to reduce this risk which can be classified into three 102 

categories (Emami-Meybodi et al., 2015): subsurface dissolution, CO2/brine surface mixing 103 

and CO2/brine wellbore mixing.   104 

The "inject low and let rise" strategy was proposed by Kumar et al., (2005) to enhance the 105 

subsurface dissolution. Some authors (Keith et al., 2005; Leonenko et al., 2006; Taku et al., 106 

2007; Leonenko and Keith 2008; Hassanzadeh et al., 2009; Anchliya et al., 2012) have 107 

suggested injecting brine above the CO2 plume to accelerate CO2 dissolution in the aquifer.  108 

They proposed a system where a horizontal brine injection well is placed above a horizontal 109 

CO2 injection well. The water-alternative-gas (CO2 WAG) has been investigated to increase 110 

the solubility trapping by injecting CO2 chased by brine in the aquifers (Qi et al., 2009; 111 

Cameron and Durlofsky, 2012; Zhang and Agarwal 2012, 2013).   112 

A CO2/brine surface mixing strategy (Figure 1) has been investigated by different authors 113 

(Burton and Bryant 2009; Eke et al., 2011; Zendehboudi et al., 2011; Cholewinski and 114 



Lonenko 2013; Tao and Bryant, 2014). They showed that the surface dissolution facilities 115 

enhance CO2/brine solubility. Hence, the CO2-saturated brine stream could overcome the 116 

buoyancy force. Bergmo et al., (2011) showed that producing water from the aquifer while 117 

injecting CO2 leads to a reduction in pressure both in the near well bore and throughout the 118 

field. Therefore, it is considered that a CO2/brine surface mixing strategy could improve the 119 

effectiveness of CO2 storage. Because injecting dissolved CO2 eliminates free CO2 in the 120 

aquifer, there is no buoyant rise of CO2 towards the caprock. However, Burton and Bryant 121 

(2009) admitted that the surface dissolution method has some disadvantages in comparison to 122 

the standard CO2 injection method.  For example: many more injection wells and extraction 123 

wells are needed which raises the storage cost. In addition, as the CO2 saturated brine is 124 

acidic, the surface facilities and injection wells need to be resistant to corrosion. Furthermore, 125 

the cost of surface mixing equipment and related operations needs to be considered. 126 

A wellbore dissolution technique was proposed (Shafaei et al., 2012; Zirrahi et al., 2013a; 127 

Pool et al., 2013; Paterson et al., 2014; Sigfusson et al., 2015) to eliminate some of the 128 

disadvantages of the CO2/brine surface mixing strategy. Shafaei et al., (2012) proposed a 129 

reverse gas lift method to inject CO2 through the annulus and brine through tubing 130 

simultaneously. In their proposed method, gas lift valves provide communication for CO2 to 131 

access the tubing where water was injected and consequently CO2 dissolves in brine in the 132 

wellbore. Zirrahi et al., (2013) performed laboratory experiments to assess the feasibility of a 133 

static mixing device for CO2 and brine. They assume that the brine will be produced to the 134 

surface from a well some distance away. Then this water will be pumped into the tubing of 135 

the injection well while CO2 is pumped into the annulus.  The mixing device will be placed at 136 

the bottom of the injection well. Down-hole mixing of CO2 and brine was performed in one 137 

of the tests at the Otway pilot storage site in Australia (Paterson et al., 2013). CO2 and brine 138 

were injected simultaneously down the well, and no special mixing device was used. 139 

Sigfusson et al., (2015) demonstrated successful CO2/brine wellbore dissolution process 140 

during its injection into porous basalts rocks at depth of 400-800 m at the Hellisheidi, Iceland 141 

CarbFix injection site. In all wellbore dissolution techniques that have been proposed the 142 

water is being injected at the wellhead and this means water needs to be extracted and lifted 143 

to the surface.  144 



 145 

Figure 1: CO2/brine Surface Mixing Strategy. 146 

 147 

Methodology: 148 

The aim of this work is to investigate the potential to increase storage capacity and security 149 

by use of an engineering method for CO2 injection in which CO2 is dissolved in brine down-150 

hole. The advantage of injecting CO2 dissolved in brine is that it is denser than unsaturated in 151 

situ formation brine (approximately 10kg/m3,Ennis-King and Paterson, 2003, Ennis-King et 152 

al., 2005, Riaz et al., 2006), and so will not migrate towards the surface as free phase CO2 153 

would.  Therefore, in this approach, retention of CO2 within a formation does not rely on the 154 

presence of an impermeable seal.  Instead, all CO2 injected as a dissolved phase will migrate 155 

downwards. This has three consequences. Firstly, a higher percentage of the pore volume 156 

becomes available for storage, and not just that part of the rock that is shallower than the spill 157 

point: this can increase the storage capacity of formations. Secondly, there are no concerns 158 

around the integrity of the caprock. Indeed, there is no requirement for a caprock to prevent 159 

vertical migration of CO2 due to buoyancy. Thirdly, this means that many additional 160 

formations may become available as potential storage sites. 161 

As mentioned above, CO2 dissolution in brine at the surface prior to injection has been 162 

considered previously (e.g. Burton and Bryant, 2009). However, this postulated method of 163 

injection suffers from some technical limitations. Because the solubility of CO2 in brine is 164 

limited at standard conditions, energy would be required to pressurise CO2 and brine at the 165 



surface prior to mixing to enhance solubility. The cost of such equipment, which would have 166 

to have an appropriate pressure rating, be made of corrosion resistant material (high 167 

chromium steel) and have capacity for dissolving in the order of thousands of tonnes of CO2 168 

per day, would be prohibitive. Also, in this method if the brine in not extracted from the 169 

storage formation because of the availability of sea water and to reduce the cost of drilling the 170 

brine extraction wells, then the volume of brine that would have to be injected in addition to 171 

the CO2 would increase the reservoir pressure much more rapidly than during pure CO2 172 

injection, very severely restricting storage capacity. 173 

In this proposed injection system, brine is extracted from the target aquifer by means of a 174 

lateral horizontal completion located near the top of the formation (Figure 2). It should be 175 

noted that in this method water is not being lifted to the surface. An Electrical Submersible 176 

Pump (ESP) is used to extract the brine and boost its pressure, before it mixes with CO2 that 177 

is being injected down the vertical section of the well. The mixing takes place in the vertical 178 

section of the well below the upper lateral. However, it should be noted that the entire volume 179 

of CO2 may not be dissolved throughout the limited section of the wellbore. Blyton and 180 

Bryant (2013) studied the kinetics of CO2 and brine under a range of conditions. They studied 181 

the dissolution throughout a 2000-ft wellbore for different wellbore radii. A down-hole tool 182 

(e.g. a static mixing device, Zirrahi et al., 2013a) would be used to maximise agitation and 183 

contact area between CO2 and brine in the mixing section of the well, which may be 10s to 184 

100s of metres long. The CO2 – brine mix is then injected into the same formation in a lower 185 

lateral. If the CO2 does not entirely dissolve in the wellbore the dissolution can continue 186 

inside the aquifer. 187 

 188 



Figure 2: Schematic process of CO2/brine down-hole mixing. 189 

 Dissolution of CO2 in Brine 190 

In this work, the method of Spycher and Pruess (2005) was used to calculate the mole 191 

fraction of CO2 dissolved in brine (assuming that sodium chloride was the only salt present). 192 

They studied CO2–H2O mixtures in the geological sequestration of CO2 at temperatures in the 193 

range 12–100 °C and at pressures up to 600 bars. CO2 solubility in brine, at constant 194 

temperature and salinity, increases with increasing pressure within these ranges (Spycher and 195 

Pruess 2005). With increasing temperature, the solubility of CO2 decreases even at increasing 196 

pressures. Thus the best conditions for having a greater dissolution of CO2 in brine are higher 197 

pressure and lower temperature. Computed data shows that the optimum depth of CO2 198 

storage is just below 800 meters. On the one hand, pressure and temperature conditions meet 199 

CO2 supercritical criteria at that depth. On the other hand, if CO2 is stored at greater depth, 200 

the temperature and salinity will rise, so the amount of dissolution will decrease. It should be 201 

noted that  storage of CO2 in deeper saline aquifers with higher pressure and temperature 202 

have been of interest to several studies and they have been introduced as favorable candidates 203 

for CO2 storage since storage in them is safer because they are deeper and also their 204 

geothermal energy and/or dissolved methane can be used to offset the cost of CCS 205 

(Ganjdanesh et al. 2014;2015; Salimi and Wolf, 2012). 206 

Simulations of Down-hole Mixing 207 

A range of numerical simulations using a variety of heterogeneous and homogeneous models 208 

was conducted to investigate the impact of the CO2/brine down-hole mixing injection 209 

strategy.  Eclipse 300 with the CO2STORE module (Schlumberger, 2012) was used for the 210 

simulations. 211 

The models all have dimensions of 10000 m × 500 m × 134 m and were discretized into 212 

200×50×80 cells. The porosity and the permeability values in the homogeneous models were 213 

assigned values of 0.2 and 1000 mD respectively in all directions. For the heterogeneous 214 

models the average porosity and average permeability values were the same as the 215 

homogeneous one. Sequential Gaussian simulation was used to generate the facies 216 

distribution and the permeability and porosity were correlated accordingly. The models 217 

represented part of a larger aquifer, and the pore volume of the ten outer cells on each side 218 

(left and right of the model) was multiplied by a factor of 1000, to take account of this. In the 219 

simulations, the pump for extracting the brine was modelled as a producer in one branch of a 220 



well. The down-hole dissolution was not modelled explicitly. Instead, in the simulation, a 221 

solution of CO2 dissolved in brine was injected through the lower branch of the well. In the 222 

subsequent description, these branches of the well are referred to as the producer and the 223 

injector. 224 

In all cases, a single production/injection well was placed in the centre of the model. The 225 

composition of the injected fluid, in terms of mole fractions was 0.015, 0.9556 and 0.0294 for 226 

dissolved CO2, water and NaCl respectively. These values correspond to thermodynamic 227 

equilibrium at down-hole conditions in the simulations, at 100 bars and 35 °C using Spycher 228 

and Pruess (2005). The control mode for both production and injection was reservoir fluid 229 

volume rate and the rates were 1000 rm3/day and 940 rm3/day for the injector (solution of 230 

CO2 dissolved in brine) and the producer (brine) respectively. Both producer and injector 231 

were shut after 20 years and the simulation was continued for 100 years. It should be noted 232 

that the mineral trapping is not been considered in this modelling.  233 

Figure 3 illustrates the well location and connections. Water is extracted from the top of the 234 

reservoir and pumped into the bottom hole while the supercritical CO2 is injected into the 235 

well. Supercritical CO2 is dissolved in the extracted brine in the well. It is assumed that this 236 

process can be managed by a specific CO2/brine down-hole mixing tool.   237 

238 
     239 

Figure 3: Well location and Connections. 240 

This work does not consider the design of such a tool, but is purely concerned with the 241 

question of whether such a tool, if it could be appropriately designed, would provide a benefit 242 

for CCS. Zirrahi et al., (2013b) proposed the application of a back flow cell model for the 243 

simulation of the supercritical CO2 dissolution. In the Otway Pilot Test (Paterson, 2013), it 244 

was estimated that down-hole mixing would occur without the use of a specific tool. 245 

Extract water from here
(600 m) Inject CO2 brine saturated

(600 m)

Inject CO2



Sigfusson et al., (2015) successfully demonstrated the complete dissolution of CO2 into water 246 

during its injection into a storage formation. In our study we assume the CO2 is dissolved in 247 

brine prior to its injection into the saline aquifer.  248 

Results and Discussion: 249 

Figure 4 shows the CO2 mole fraction at the end of the 20 year injection period and 100 years 250 

after shut-in, for the 3-D homogeneous and heterogeneous models. Note that, because CO2 251 

was dissolved in brine in the well, there was no free injected CO2 in the model, nor did any 252 

exsolve from solution during the period of the calculation. As the dissolved CO2 is injected 253 

into the aquifer it moves in all directions. This migration is governed by the injection rate, 254 

heterogeneity, production rate and gravity forces during the injection period. When both 255 

producer and injector are shut, gravity is dominant. The CO2-saturated region tends to be 256 

skewed towards the producer where the pressure is lower, but the dissolved CO2 does not 257 

reach the extraction region.   258 

 259 

Figure 4: CO2 mole fractions dissolved in brine in the X-Z plane for the homogeneous model 260 

(left) and heterogeneous model (right). 261 



Figure 5 shows pressure changes across the aquifer in a cross section of the heterogeneous 262 

model.  As can be seen the range in pressure in the model is only 25 bar. The time to establish 263 

a steady state pressure field is determined by the magnitude of the diffusivity constant. Once 264 

the transient period is completed, the subsequent pressure trends are determined by mass 265 

balance in the field, which depends on the difference between the down-hole injection and 266 

production rate.   267 

 268 

 Figure 5: Pressure distributions in the X-Z plane at the end of injection period in the 269 

heterogeneous model. 270 

The advantages of this method include 271 

▪ Because the CO2 is mixed with brine from the same formation, any overall pressure 272 

increase is due exclusively to injection of the CO2 and is not due to brine. 273 

▪ The extracted brine is already at high pressure when it mixes with the CO2, greatly 274 

increasing the solubility of CO2 and reducing the volume of brine required. Energy is 275 

not expended lifting the brine to surface. Nor is there any concern about handling 276 

large volumes of acidic brine in the surface equipment. 277 

▪ The extent of monitoring of migration of free CO2, which is costly, is decreased 278 

because all the CO2 is dissolved. 279 

▪ The injected CO2 – brine mix will ultimately migrate downwards, increasing storage 280 

capacity and security. 281 

 282 



Application of DHM Method to a Real Field 283 

The British Geological Survey (BGS) highlighted a near shore formation in Lincolnshire as 284 

an analogue of a hypothetical large offshore storage site for captured CO2 from potential 285 

onshore capture projects (i.e. Ferrybridge Power Station). A West to East schematic 286 

geological cross-section of the Lincolnshire study area is presented in the Figure  (right 287 

picture). 288 

 289 

Figure 6 Location Map of Lincolnshire area (left picture), schematic geological cross-section 290 

(west to east) of the Lincolnshire study area (Smith et al., 2012). 291 

The model has dimensions of 43 km × 33 km × 600 m and was discretized into 96×67×15 292 

cells. An isotropic range of 2000m in the horizontal was used for the correlation in the 293 

distribution of properties. The geometric average for the permeabilities was 500 mD for the 294 

storage formation (Sherwood Sandstone) and 0.005 mD for the low permeable layers (Mercia 295 

Mudstone) (Smith et al., 2012). The ratio of vertical permeability to horizontal permeability 296 

(Kv/Kh) was assumed to be 0.1 due the layered types of sediments which were deposited in 297 

this region. The layer just beneath the caprock has been divided in 10 layers and modified to 298 

consist of 60% mudstone and 40% sandstone to represent the transition zone between the 299 

Sherwood Sandstone and the Mercia Mudstone, which was observed at outcrop (Shariatipour 300 

et al., 2014).   301 

The base case model is large, covering an area of 1419 km2 (top surface) and also has a large 302 

cell size 0.2 km2 (450m×450m, in the X and Y directions). In order to improve the accuracy 303 

of the simulations, a sector of this model was used with a finer resolution. Figure  304 

demonstrates the area of interest for further study in this model. 305 



 306 

Figure 7 The geological framework of the Lincolnshire Model (10X vertical exaggeration) 307 

(left picture, Smith et al., 2012), area of interest (green section) in the middle (right picture). 308 

In all cases, a single production/injection well was placed in the centre of the model (to 309 

represent a down-hole mixing system, as described above). The control mode for both 310 

production and injection was reservoir fluid volume rate and the rates were 6500 rm3/day and 311 

6175 rm3/day for the injector and the producer, respectively. Both producer and injector were 312 

shut after 100 years and the simulation was continued for 1000 years. 313 

Figure 8 shows brine density verses depth used in the Lincolnshire Model for this study.  As a 314 

result of dissolving CO2 in brine the density of brine increases (Duan and Sun 2003, Spycher 315 

et al., 2005).  This increase for the extracted brine at the depth of 1000 m in this model equals 316 

7.8 kg/m3 which is equal to the density of fresh brine at the depth of 2557 m.  The difference 317 

in density of brine with and without CO2, for most suitable storage aquifers is similar.  318 

However, the salinity gradient may vary and therefore the blue line may move upwards or 319 

downwards. 320 



 321 

Figure 8 Brine density verses depth, red dots show density of brine without CO2 (1063.4 kg/m3) and 322 

with CO2 (1071.2 kg/m3) at the depth of 1000 m.  The blue line refers to the brine density extracted 323 

from the simulator for the Lincolnshire Model. Geothermal gradient is set at 20 C/km. 324 

Results 325 

Figure 9 demonstrates the CO2 mole fraction at the end of the 100 year injection period and 326 

1000 years after well is shut-in. Note that, because CO2 was dissolved in brine in the well, 327 

there was no free injected CO2 phase in the model, nor did any exsolve from solution during 328 

the period of the calculation. CO2 saturated brine is denser than in situ brine. Therefore, it 329 

should go downwards. Upwards migration of CO2 occurs initially t due to the applied 330 

pressure gradient, but it then subsequently sinks down again due to gravity. 331 

 332 

 333 

 334 

Figure 9 CO2 mole fraction at the end of injection period (100 years) (left picture), and 1000 335 

years post injection period (right picture). 336 



Optimization  337 

In this section we investigate the position of the laterals in terms of depths and lengths. Table 338 

1 and Figure 10 shows all scenarios studied here. The area around the injection lateral into 339 

which the dissolved CO2 is injected was refined by factor of 9×9×9 in X, Y, and Z directions.  340 

Table 1 Model properties 341 

  Brine Extractor Lateral CO2 Saturated Brine Lateral 

Model Location of 

the lateral 

Distance from the 

wellbore 

Location of 

the lateral 

Distance from the 

wellbore 

1 Top of the 

aquifer 

2.7 km away from the 

wellbore 

Bottom of the 

aquifer 

2.7 km away from the 

wellbore 

2 Top of the 

aquifer 

2.7 km away from the 

wellbore 

Bottom of the 

aquifer 

Adjacent to the 

wellbore 

3 Top of the 

aquifer 

2.7 km away from the 

wellbore 

Middle of the 

aquifer 

2.7 km away from the 

wellbore 

4 Top of the 

aquifer 

2.7 km away from the 

wellbore 

Middle of the 

aquifer 

Adjacent to the 

wellbore 

5 Top of the 

aquifer 

Adjacent to the 

wellbore 

Bottom of the 

aquifer 

2.7 km away from the 

wellbore 

6 Top of the 

aquifer 

Adjacent to the 

wellbore 

Bottom of the 

aquifer 

Adjacent to the 

wellbore 

7 Top of the 

aquifer 

Adjacent to the 

wellbore 

Middle of the 

aquifer 

2.7 km away from the 

wellbore 

8 Top of the 

aquifer 

Adjacent to the 

wellbore 

Middle of the 

aquifer 

Adjacent to the 

wellbore 

 342 

 343 

 344 

 345 

 346 

 347 

Figure 10 Cross sections of Models 1 to 8 show the brine extractor laterals at the top of the 348 

storage formation and the injector laterals at the either bottom of the aquifer (Models 1,2,5, 349 

and 6) or at the Middle of the aquifer (Models 3,4,7, and 8).  Brine is extracted 2.7 km away 350 

from the well bore in the four left Models (1, 2, 3 and 4) whereas is extracted at adjacent to 351 

the well bore in Model 5, 6, 7, and 8 (four right models).  Dissolved CO2 in brine is injected 352 

into the storage formation 2.7 km away from the well bore in the four left Models (1, 3, 5, and 353 

7) and at adjacent to the well bore in the four right Models (2, 4, 6, and 8) respectively. 354 



The viscous force is the main driving force when dissolved CO2 is injected into the aquifer. 355 

The injected fluid tends to migrate towards the brine extractor lateral where the pressure is 356 

lower. However, even after 100 years of dissolved CO2 injection into the storage formation, 357 

the dissolved CO2 does not reach the brine extractor perforations, except in Models 6 and 8 358 

due to shorter distance between injection and producer points than in other models (Figure 359 

11). All the free phase CO2 was dissolved prior to injection into the storage formation. 360 

Dissolved CO2 in brine is heavier than fresh brine and thus the CO2 saturated brine tends to 361 

sink in the aquifer under gravity.  362 

Models 6 and 8 are not of further interest due to the small distance between the perforation at 363 

the injector lateral and extractor lateral that could allow dissolved CO2 to reach the extraction 364 

region.  In all other models (1, 2, 3, 4, 5, 7) dissolved CO2 does not reach the perforations at 365 

the extractor lateral. Therefore, all these models are acceptable for further study. However, 366 

further screening was performed based on the length of the laterals (which determines the 367 

cost), and the pressure loss. Model 1 provides the biggest distance between the extraction 368 

region and the injection region among all models, therefore it can be considered as the safest 369 

scenario. On the other hand, Model 4 could be the best option because of: 370 

1. The lowest frictional pressure loss in the wellbore. 371 
 372 

2. The minimum length of high chromium steel needed. 373 

 374 

 375 

Figure 11 CO2 mole fractions dissolved at the end of injection period (100 years). Models 1 376 
to 8 show the brine extractor lateral at the top of the storage formation and the injector 377 

lateral at either the bottom of the aquifer (Models 1,2,5, and 6) or at the middle of the aquifer 378 
(Models 3,4,7, and 8). Brine is extracted 2.7 km away from the well bore in the four left 379 
Models (1, 2, 3 and 4) whereas it is extracted adjacent to the well bore in Models 5, 6, 7, and 380 
8 (four right models). Dissolved CO2 in brine is injected into the storage formation 2.7 km 381 
away in the four left Models (1, 3, 5, and 7) and adjacent to the well bore in the four right 382 
Models (2, 4, 6, and 8) respectively. 383 

Model 1
Model 2

Model 3 Model 4

Model 5 Model 6

Model 7 Model 8



CO2 Storage Capacity 384 

Table 2 shows the amount of CO2 can be dissolved in water with 3 different salinities (35000 385 

mg/l, 100000 mg/l and 200000 mg/l) at depths of 1000 m.  This analytical calculation is made 386 

based on Spycher and Pruess (2005). 387 

                     Table 2: Amount of CO2 which can be dissolved in brine at different conditions 388 

Depth Pressure Temperature Salinity CO2 dissolved 

(m) (bar) ( C ) (mg/l) ( kg/m3) 

1000 

 

 

100 

 

 

35 

 

 

35000 50.583 

100000 39.34 

200000 29.067 

 389 

The density of CO2 at 100 bars and 35 C equals 713.68 kg/m3 and at standard conditions (15 390 

C and 1 bar) equals 1.85 kg/m3.  In our calculation 39.34 kg CO2 can be dissolved in 1 m3 391 

brine (NaCl, 100,000mg/l).  Thus, the amount of CO2 that can be dissolved at this reservoir 392 

condition in 6175 m3 brine equals 242924.5 kg. 393 

Assuming mass conservation, then 0.088 Mt CO2/year per well can be dissolved down-hole 394 

and injected into the aquifer at the aforementioned condition.  The target of injecting 1 MT 395 

CO2/year can be achieved by drilling 11 wells.  This calculation depends on the P, T, salinity, 396 

and the reservoir volume injection rate.  For a reservoir with lower salinity (e.g. 35,000 ppm 397 

at the brine extractor points) with the same T, P, and reservoir volume injection rate just 8 398 

wells are needed to inject 1 MT dissolved CO2 in brine/year.  Drilling engineering enables us 399 

to use dual completion and multi-lateral well techniques so more laterals could be used for 400 

brine extraction and CO2 saturated brine injection.  This results in reducing the number of 401 

required wells for CO2 injection. The model indicates the amount of dissolved CO2 which 402 

could be injected per well per year.  However, at this stage, no detailed modelling of the 403 

mixing process in the well has been carried out. 404 

The impact of injection of carbonated water would also be to stimulate the near wellbore, 405 

akin to acid stimulation (Fredd and Fogler, 1998), but on a continuous rather than batch basis.  406 

This would be different from any stimulation arising from pure CO2 injection with 407 

subsequent dissolution in the brine phase, since such dissolution would, in the main, take 408 



place away from the sand face.  In this latter case, CO2 would dissolve in the formation brine, 409 

and this acid brine will quickly be displaced from the near well zone, with less than one local 410 

pore volume of acid brine contacting the near wellbore rock.  Any residual water would also 411 

be acidified, but any dissolution of rock would buffer this brine, and no further dissolution 412 

would take place.  However, continuous injection of carbonated water will result in many 413 

multiple pore volumes of unbuffered acid brine flowing through the near wellbore zone, and 414 

this is the part of the system where rock dissolution and increase of local permeability will 415 

have the greatest impact. 416 

Conclusions and Recommendations: 417 

The results indicate that CO2/brine down-hole mixing could improve CO2 sequestration.  This 418 

reservoir simulation study demonstrates that the upward migration of CO2 in the reservoir can 419 

be limited to viscous effects during the injection period, and that during the subsequent shut-420 

in period gravity segregation displaces the CO2 saturated brine downwards, thereby 421 

increasing the storage safety. The limitation of the proposed method is that the amount of 422 

CO2 that can be injected in one well is restricted. Injecting at a much higher total volume rate 423 

will increase the bottom hole pressure (BHP). On the other hand, it will be single rather than 424 

two-phase injection, and the acid brine may additionally stimulate the formation. The BHP 425 

will be higher for this method than if the CO2 were injected without brine, but the increase 426 

will be somewhat mitigated by these two factors (single phase injection and acidic fluid 427 

stimulation).  Also, the overall field average pressure will be the same as if the CO2 were 428 

injected without brine, as the overall material balance is the same. 429 

Calculations were performed to identify the optimum level and length of water extraction and 430 

injection of dissolved CO2 in brine.  In terms of the minimum length of corrosion-resistant 431 

tools and frictional pressure loss, the most efficient model is the one where the brine 432 

extraction lateral is completed away from the borehole whereas the CO2 saturated injection 433 

lateral is close to the borehole.  The former is to maximize the distance between extraction 434 

and injection and the latter is to minimize the need for having high chromium steel. This 435 

technique provides the opportunity for much more secure storage of CO2 than is currently 436 

envisaged by conventional injection of CO2 alone. Less attention needs to be paid to caprock 437 

integrity using this method of storage, and appraisal and monitoring costs may be vastly 438 

reduced. More secure storage of CO2 will be of interest to organisations involved in CCS 439 



projects, regulators, and other stakeholders, such as environmental organisations and the 440 

general public. 441 

Having demonstrated that the concept can be used to maximise storage capacity and security, 442 

recommendations for future work include a full economic calculation to evaluate the use of a 443 

dual completion, instead of a new well, and also to compare economically this method with 444 

all other proposed methods for CO2 injection. 445 
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