

An engineering solution for CO2 injection in saline aquifers

Shariatipour, S. M., Mackay, E. J., Pickup, G. E.

Author post-print (accepted) deposited by Coventry University's Repository

Original citation & hyperlink:

Shariatipour, SM, Mackay, EJ & Pickup, GE 2016, 'An engineering solution for CO2 injection in saline aquifers' International Journal of Greenhouse Gas Control, vol 53, pp. 98-105. DOI: 10.1016/j.ijggc.2016.06.006 https://dx.doi.org/10.1016/j.ijggc.2016.06.006

DOI 10.1016/j.ijggc.2016.06.006 ISSN 1750-5836

Publisher: Elsevier

NOTICE: this is the author's version of a work that was accepted for publication in International Journal of Greenhouse Gas Control. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Greenhouse Gas Control, VOL 53, (2016] DOI: 10.1016/j.ijggc.2016.06.006

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version

may remain and you are advised to consult the published version if you wish to cite from it.

1	Corresponding Author: Dr. Seyed Mohammad Shariatipour, Ph.D
2	
3	Corresponding Author's Institution: Coventry University
4	
5	First Author: Seyed M Shariatipour, PhD
6	
7	Corresponding Author's Email: <u>Seyed.Shariatipour@Coventry.Ac.Uk</u>
8	Order of Arthurst Correct M. Charietin and Eric I.M. dare? Cillian E.Distan?
9 10	Order of Authors: Seyed M Sharlaupour"; Eric J Mackay"; Gillian E Pickup
10	Elow Massurement and Eluid Machanica Passarah Contra Coventry University Priory
12	Street Coventry CV1 5EB LIK
12	² Heriot Watt University Riccarton Edinburgh EH14 4AS UK
14	Terior-watt Oniversity, Receation, Lamourgi Litti 4745, OK
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
3U 21	
33	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
40 47	
47 48	
49	
50	

51 52 53

54 Abstract

55 In this proposed CO_2 injection system, brine is extracted from the target storage aquifer by means of a lateral horizontal completion located near the top of the formation. It should be 56 57 noted that the brine is not lifted to the surface. An Electrical Submersible Pump (ESP) is used to extract the brine and boost its pressure, before it is mixed with CO₂ that is injected down 58 59 the vertical section of the well. The mixing takes place in the vertical section of the well below the upper lateral. The CO_2 – brine mix is then injected into the same formation through 60 61 a lower lateral. A down-hole tool would be used to maximise agitation and contact area between CO₂ and brine in the vertical mixing section of the well, which may be tens to 62 63 hundreds of metres long, depending on the thickness of the formation.

The advantages of this method are that there is little overall pressure increase, because CO_2 is 64 mixed with brine extracted from the formation, and also the extracted brine is already at high 65 pressure when it is mixed with the CO₂, greatly increasing the solubility of CO₂ and reducing 66 the volume of brine required. Energy is not expended lifting the brine to surface nor is there 67 any concern about handling large volumes of acidic brine in the surface equipment. In this 68 study, in addition to the concept of the down-hole mixing (DHM) method which is presented, 69 70 the application of the DHM method in a hypothetical storage site (Lincolnshire – Smith et al., 2012) is also examined. The calculations are performed to identify the optimum rates of 71 water extraction and injection of dissolved CO₂ in brine. 72

73 Introduction:

Since the industrial revolution, the CO₂ concentration in the atmosphere has increased by 74 45% (Celia et al., 2015). At the current time, it is believed that carbon capture and storage 75 (CCS) can play a significant role in reducing the increase in the CO₂ concentration in the 76 77 atmosphere (Haszeldine, 2009). In the long term, several trapping mechanisms such as structural and stratigraphic trapping, residual trapping, solubility trapping and mineral 78 79 trapping can be used to sequester supercritical CO₂ into the aquifers or depleted reservoirs (Benson and Cole 2008). Structural trapping to prevent upward migration of CO₂ is provided 80 by a very low permeability layer, which is frequently a clay or shale layer, at the top of the 81 82 storage formation. Safe long-term CO_2 storage has been one of the most important issues, in terms of environmental damage that could be caused by leakage (Gasda et al., 2004;
Nordbotten et al., 2005; Burton and Bryant 2009; Celia et al. 2011; Bachu and Celia 2009).
Therefore long-term monitoring needs to be carried out (Mathieson et al., 2011), which
increases the total cost of CO₂ storage.

Furthermore, due to the complexity of fully understanding the interface between 87 caprock/aquifer, and the risk of CO₂ leakage through caprock as a result of pressure build-up 88 at the interface between aquifer/caprock (Shariatipour et al., 2012, 2014; Newell and 89 90 Shariatipour 2016), the development of novel methods in which CO₂ injected into aquifers 91 does not migrate toward the interface is desirable. In this paper an engineering method for CO_2 injection in which CO_2 is dissolved in brine down-hole is presented. If we can minimize 92 93 the vertical migration of CO₂ in the reservoir, then it increases the safety in terms of any possible leakage through existing fractures and faults or fractures arising due to CO₂ 94 95 injection. Injecting dissolved CO₂ could not only prevent buoyant vertical migration of CO₂, but it could also lead to dissolved CO₂ sinking in the reservoir, as brine with dissolved CO₂ is 96 97 denser (around 1%) than formation brine (Ennis-King and Paterson, 2003, Ennis-King et al., 2005, Riaz et al., 2006). 98

In many carbon capture and storage (CCS) research projects that have been published (Kumar et al., 2005; Burton and Bryant 2009; Anchliya et al., 2012 and more), one of the main concerns the authors have addressed is the security of CO_2 storage. Several engineering techniques have been suggested to reduce this risk which can be classified into three categories (Emami-Meybodi et al., 2015): subsurface dissolution, CO_2 /brine surface mixing and CO_2 /brine wellbore mixing.

The "inject low and let rise" strategy was proposed by Kumar et al., (2005) to enhance the 105 subsurface dissolution. Some authors (Keith et al., 2005; Leonenko et al., 2006; Taku et al., 106 2007; Leonenko and Keith 2008; Hassanzadeh et al., 2009; Anchliya et al., 2012) have 107 suggested injecting brine above the CO₂ plume to accelerate CO₂ dissolution in the aquifer. 108 They proposed a system where a horizontal brine injection well is placed above a horizontal 109 CO₂ injection well. The water-alternative-gas (CO₂ WAG) has been investigated to increase 110 the solubility trapping by injecting CO_2 chased by brine in the aquifers (Qi et al., 2009; 111 Cameron and Durlofsky, 2012; Zhang and Agarwal 2012, 2013). 112

113 A CO₂/brine surface mixing strategy (Figure 1) has been investigated by different authors 114 (Burton and Bryant 2009; Eke et al., 2011; Zendehboudi et al., 2011; Cholewinski and

Lonenko 2013; Tao and Bryant, 2014). They showed that the surface dissolution facilities 115 enhance CO₂/brine solubility. Hence, the CO₂-saturated brine stream could overcome the 116 buoyancy force. Bergmo et al., (2011) showed that producing water from the aquifer while 117 injecting CO₂ leads to a reduction in pressure both in the near well bore and throughout the 118 field. Therefore, it is considered that a CO₂/brine surface mixing strategy could improve the 119 effectiveness of CO₂ storage. Because injecting dissolved CO₂ eliminates free CO₂ in the 120 aquifer, there is no buoyant rise of CO₂ towards the caprock. However, Burton and Bryant 121 (2009) admitted that the surface dissolution method has some disadvantages in comparison to 122 123 the standard CO₂ injection method. For example: many more injection wells and extraction wells are needed which raises the storage cost. In addition, as the CO₂ saturated brine is 124 acidic, the surface facilities and injection wells need to be resistant to corrosion. Furthermore, 125 the cost of surface mixing equipment and related operations needs to be considered. 126

127 A wellbore dissolution technique was proposed (Shafaei et al., 2012; Zirrahi et al., 2013a; Pool et al., 2013; Paterson et al., 2014; Sigfusson et al., 2015) to eliminate some of the 128 129 disadvantages of the CO₂/brine surface mixing strategy. Shafaei et al., (2012) proposed a reverse gas lift method to inject CO₂ through the annulus and brine through tubing 130 131 simultaneously. In their proposed method, gas lift valves provide communication for CO_2 to access the tubing where water was injected and consequently CO₂ dissolves in brine in the 132 wellbore. Zirrahi et al., (2013) performed laboratory experiments to assess the feasibility of a 133 static mixing device for CO₂ and brine. They assume that the brine will be produced to the 134 surface from a well some distance away. Then this water will be pumped into the tubing of 135 the injection well while CO_2 is pumped into the annulus. The mixing device will be placed at 136 the bottom of the injection well. Down-hole mixing of CO₂ and brine was performed in one 137 of the tests at the Otway pilot storage site in Australia (Paterson et al., 2013). CO₂ and brine 138 were injected simultaneously down the well, and no special mixing device was used. 139 Sigfusson et al., (2015) demonstrated successful CO₂/brine wellbore dissolution process 140 during its injection into porous basalts rocks at depth of 400-800 m at the Hellisheidi, Iceland 141 142 CarbFix injection site. In all wellbore dissolution techniques that have been proposed the water is being injected at the wellhead and this means water needs to be extracted and lifted 143 144 to the surface.

145

146 *Figure 1: CO*₂/*brine Surface Mixing Strategy.*

147

148 Methodology:

The aim of this work is to investigate the potential to increase storage capacity and security 149 by use of an engineering method for CO₂ injection in which CO₂ is dissolved in brine down-150 hole. The advantage of injecting CO₂ dissolved in brine is that it is denser than unsaturated in 151 situ formation brine (approximately 10kg/m³,Ennis-King and Paterson, 2003, Ennis-King et 152 al., 2005, Riaz et al., 2006), and so will not migrate towards the surface as free phase CO₂ 153 would. Therefore, in this approach, retention of CO_2 within a formation does not rely on the 154 presence of an impermeable seal. Instead, all CO₂ injected as a dissolved phase will migrate 155 156 downwards. This has three consequences. Firstly, a higher percentage of the pore volume becomes available for storage, and not just that part of the rock that is shallower than the spill 157 point: this can increase the storage capacity of formations. Secondly, there are no concerns 158 around the integrity of the caprock. Indeed, there is no requirement for a caprock to prevent 159 vertical migration of CO₂ due to buoyancy. Thirdly, this means that many additional 160 formations may become available as potential storage sites. 161

As mentioned above, CO_2 dissolution in brine at the surface prior to injection has been considered previously (e.g. Burton and Bryant, 2009). However, this postulated method of injection suffers from some technical limitations. Because the solubility of CO_2 in brine is limited at standard conditions, energy would be required to pressurise CO_2 and brine at the

surface prior to mixing to enhance solubility. The cost of such equipment, which would have 166 to have an appropriate pressure rating, be made of corrosion resistant material (high 167 chromium steel) and have capacity for dissolving in the order of thousands of tonnes of CO₂ 168 per day, would be prohibitive. Also, in this method if the brine in not extracted from the 169 storage formation because of the availability of sea water and to reduce the cost of drilling the 170 brine extraction wells, then the volume of brine that would have to be injected in addition to 171 the CO_2 would increase the reservoir pressure much more rapidly than during pure CO_2 172 injection, very severely restricting storage capacity. 173

174 In this proposed injection system, brine is extracted from the target aquifer by means of a lateral horizontal completion located near the top of the formation (Figure 2). It should be 175 noted that in this method water is not being lifted to the surface. An Electrical Submersible 176 Pump (ESP) is used to extract the brine and boost its pressure, before it mixes with CO₂ that 177 178 is being injected down the vertical section of the well. The mixing takes place in the vertical section of the well below the upper lateral. However, it should be noted that the entire volume 179 180 of CO_2 may not be dissolved throughout the limited section of the wellbore. Blyton and Bryant (2013) studied the kinetics of CO₂ and brine under a range of conditions. They studied 181 the dissolution throughout a 2000-ft wellbore for different wellbore radii. A down-hole tool 182 (e.g. a static mixing device, Zirrahi et al., 2013a) would be used to maximise agitation and 183 contact area between CO₂ and brine in the mixing section of the well, which may be 10s to 184 100s of metres long. The CO_2 – brine mix is then injected into the same formation in a lower 185 lateral. If the CO₂ does not entirely dissolve in the wellbore the dissolution can continue 186 inside the aquifer. 187

190 **Dissolution of CO₂ in Brine**

In this work, the method of Spycher and Pruess (2005) was used to calculate the mole 191 fraction of CO₂ dissolved in brine (assuming that sodium chloride was the only salt present). 192 They studied CO₂–H₂O mixtures in the geological sequestration of CO₂ at temperatures in the 193 range 12-100 °C and at pressures up to 600 bars. CO₂ solubility in brine, at constant 194 195 temperature and salinity, increases with increasing pressure within these ranges (Spycher and Pruess 2005). With increasing temperature, the solubility of CO₂ decreases even at increasing 196 pressures. Thus the best conditions for having a greater dissolution of CO_2 in brine are higher 197 pressure and lower temperature. Computed data shows that the optimum depth of CO₂ 198 storage is just below 800 meters. On the one hand, pressure and temperature conditions meet 199 CO_2 supercritical criteria at that depth. On the other hand, if CO_2 is stored at greater depth, 200 201 the temperature and salinity will rise, so the amount of dissolution will decrease. It should be noted that storage of CO_2 in deeper saline aquifers with higher pressure and temperature 202 have been of interest to several studies and they have been introduced as favorable candidates 203 for CO₂ storage since storage in them is safer because they are deeper and also their 204 geothermal energy and/or dissolved methane can be used to offset the cost of CCS 205 (Ganjdanesh et al. 2014;2015; Salimi and Wolf, 2012). 206

207 Simulations of Down-hole Mixing

A range of numerical simulations using a variety of heterogeneous and homogeneous models was conducted to investigate the impact of the CO₂/brine down-hole mixing injection strategy. Eclipse 300 with the CO2STORE module (Schlumberger, 2012) was used for the simulations.

The models all have dimensions of 10000 m \times 500 m \times 134 m and were discretized into 212 $200 \times 50 \times 80$ cells. The porosity and the permeability values in the homogeneous models were 213 214 assigned values of 0.2 and 1000 mD respectively in all directions. For the heterogeneous models the average porosity and average permeability values were the same as the 215 homogeneous one. Sequential Gaussian simulation was used to generate the facies 216 distribution and the permeability and porosity were correlated accordingly. The models 217 represented part of a larger aquifer, and the pore volume of the ten outer cells on each side 218 (left and right of the model) was multiplied by a factor of 1000, to take account of this. In the 219 220 simulations, the pump for extracting the brine was modelled as a producer in one branch of a well. The down-hole dissolution was not modelled explicitly. Instead, in the simulation, a solution of CO_2 dissolved in brine was injected through the lower branch of the well. In the subsequent description, these branches of the well are referred to as the producer and the injector.

In all cases, a single production/injection well was placed in the centre of the model. The 225 composition of the injected fluid, in terms of mole fractions was 0.015, 0.9556 and 0.0294 for 226 dissolved CO₂, water and NaCl respectively. These values correspond to thermodynamic 227 equilibrium at down-hole conditions in the simulations, at 100 bars and 35 °C using Spycher 228 229 and Pruess (2005). The control mode for both production and injection was reservoir fluid volume rate and the rates were 1000 rm³/day and 940 rm³/day for the injector (solution of 230 231 CO₂ dissolved in brine) and the producer (brine) respectively. Both producer and injector were shut after 20 years and the simulation was continued for 100 years. It should be noted 232 233 that the mineral trapping is not been considered in this modelling.

Figure 3 illustrates the well location and connections. Water is extracted from the top of the reservoir and pumped into the bottom hole while the supercritical CO_2 is injected into the well. Supercritical CO_2 is dissolved in the extracted brine in the well. It is assumed that this process can be managed by a specific CO_2 /brine down-hole mixing tool.

238 239

240 *Figure 3: Well location and Connections.*

This work does not consider the design of such a tool, but is purely concerned with the question of whether such a tool, if it could be appropriately designed, would provide a benefit for CCS. Zirrahi et al., (2013b) proposed the application of a back flow cell model for the simulation of the supercritical CO_2 dissolution. In the Otway Pilot Test (Paterson, 2013), it was estimated that down-hole mixing would occur without the use of a specific tool. Sigfusson et al., (2015) successfully demonstrated the complete dissolution of CO_2 into water during its injection into a storage formation. In our study we assume the CO_2 is dissolved in brine prior to its injection into the saline aquifer.

249 **Results and Discussion:**

Figure 4 shows the CO₂ mole fraction at the end of the 20 year injection period and 100 years 250 after shut-in, for the 3-D homogeneous and heterogeneous models. Note that, because CO₂ 251 was dissolved in brine in the well, there was no free injected CO_2 in the model, nor did any 252 exsolve from solution during the period of the calculation. As the dissolved CO_2 is injected 253 into the aquifer it moves in all directions. This migration is governed by the injection rate, 254 255 heterogeneity, production rate and gravity forces during the injection period. When both producer and injector are shut, gravity is dominant. The CO₂-saturated region tends to be 256 257 skewed towards the producer where the pressure is lower, but the dissolved CO₂ does not 258 reach the extraction region.

259

260 *Figure 4: CO*₂ *mole fractions dissolved in brine in the X-Z plane for the homogeneous model*

²⁶¹ *(left) and heterogeneous model (right).*

Figure 5 shows pressure changes across the aquifer in a cross section of the heterogeneous model. As can be seen the range in pressure in the model is only 25 bar. The time to establish a steady state pressure field is determined by the magnitude of the diffusivity constant. Once the transient period is completed, the subsequent pressure trends are determined by mass balance in the field, which depends on the difference between the down-hole injection and production rate.

Heterogeneous Model

Figure 5: Pressure distributions in the X-Z plane at the end of injection period in the heterogeneous model.

271 The advantages of this method include

- Because the CO₂ is mixed with brine from the same formation, any overall pressure
 increase is due exclusively to injection of the CO₂ and is not due to brine.
- The extracted brine is already at high pressure when it mixes with the CO₂, greatly increasing the solubility of CO₂ and reducing the volume of brine required. Energy is not expended lifting the brine to surface. Nor is there any concern about handling large volumes of acidic brine in the surface equipment.
- The extent of monitoring of migration of free CO₂, which is costly, is decreased
 because all the CO₂ is dissolved.
- The injected CO₂ brine mix will ultimately migrate downwards, increasing storage
 capacity and security.

282

268

283 Application of DHM Method to a Real Field

The British Geological Survey (BGS) highlighted a near shore formation in Lincolnshire as an analogue of a hypothetical large offshore storage site for captured CO₂ from potential onshore capture projects (i.e. Ferrybridge Power Station). A West to East schematic geological cross-section of the Lincolnshire study area is presented in the Figure (right picture).

Figure 6 Location Map of Lincolnshire area (left picture), schematic geological cross-section
(west to east) of the Lincolnshire study area (Smith et al., 2012).

The model has dimensions of 43 km \times 33 km \times 600 m and was discretized into 96×67×15 292 293 cells. An isotropic range of 2000m in the horizontal was used for the correlation in the distribution of properties. The geometric average for the permeabilities was 500 mD for the 294 295 storage formation (Sherwood Sandstone) and 0.005 mD for the low permeable layers (Mercia Mudstone) (Smith et al., 2012). The ratio of vertical permeability to horizontal permeability 296 297 (K_v/K_h) was assumed to be 0.1 due the layered types of sediments which were deposited in this region. The layer just beneath the caprock has been divided in 10 layers and modified to 298 299 consist of 60% mudstone and 40% sandstone to represent the transition zone between the Sherwood Sandstone and the Mercia Mudstone, which was observed at outcrop (Shariatipour 300 301 et al., 2014).

The base case model is large, covering an area of 1419 km^2 (top surface) and also has a large cell size 0.2 km² (450m×450m, in the X and Y directions). In order to improve the accuracy of the simulations, a sector of this model was used with a finer resolution. Figure demonstrates the area of interest for further study in this model.

Figure 7 The geological framework of the Lincolnshire Model (10X vertical exaggeration)
(left picture, Smith et al., 2012), area of interest (green section) in the middle (right picture).

In all cases, a single production/injection well was placed in the centre of the model (to represent a down-hole mixing system, as described above). The control mode for both production and injection was reservoir fluid volume rate and the rates were 6500 rm³/day and 6175 rm³/day for the injector and the producer, respectively. Both producer and injector were shut after 100 years and the simulation was continued for 1000 years.

Figure 8 shows brine density verses depth used in the Lincolnshire Model for this study. As a result of dissolving CO_2 in brine the density of brine increases (Duan and Sun 2003, Spycher et al., 2005). This increase for the extracted brine at the depth of 1000 m in this model equals 7.8 kg/m³ which is equal to the density of fresh brine at the depth of 2557 m. The difference in density of brine with and without CO_2 , for most suitable storage aquifers is similar. However, the salinity gradient may vary and therefore the blue line may move upwards or downwards.

321

Figure 8 Brine density verses depth, red dots show density of brine without CO₂ (1063.4 kg/m³) and
with CO₂ (1071.2 kg/m³) at the depth of 1000 m. The blue line refers to the brine density extracted
from the simulator for the Lincolnshire Model. Geothermal gradient is set at 20 C/km.

325 **Results**

Figure 9 demonstrates the CO_2 mole fraction at the end of the 100 year injection period and 1000 years after well is shut-in. Note that, because CO_2 was dissolved in brine in the well, there was no free injected CO_2 phase in the model, nor did any exsolve from solution during the period of the calculation. CO_2 saturated brine is denser than *in situ* brine. Therefore, it should go downwards. Upwards migration of CO_2 occurs initially t due to the applied pressure gradient, but it then subsequently sinks down again due to gravity.

Figure 9 CO₂ mole fraction at the end of injection period (100 years) (left picture), and 1000

³³⁶ years post injection period (right picture).

337 **Optimization**

- In this section we investigate the position of the laterals in terms of depths and lengths. *Table 1* and Figure 10 shows all scenarios studied here. The area around the injection lateral into which the dissolved CO₂ is injected was refined by factor of $9 \times 9 \times 9$ in X, Y, and Z directions.
- 341 Table 1 Model properties

	Brine Extractor Lateral		CO ₂ Saturated Brine Lateral	
Model	Location of the lateral	Distance from the wellbore	Location of the lateral	Distance from the wellbore
1	Top of the aquifer	2.7 km away from the wellbore	Bottom of the aquifer	2.7 km away from the wellbore
2	Top of the aquifer	2.7 km away from the wellbore	Bottom of the aquifer	Adjacent to the wellbore
3	Top of the aquifer	2.7 km away from the wellbore	Middle of the aquifer	2.7 km away from the wellbore
4	Top of the aquifer	2.7 km away from the wellbore	Middle of the aquifer	Adjacent to the wellbore
5	Top of the aquifer	Adjacent to the wellbore	Bottom of the aquifer	2.7 km away from the wellbore
6	Top of the aquifer	Adjacent to the wellbore	Bottom of the aquifer	Adjacent to the wellbore
7	Top of the aquifer	Adjacent to the wellbore	Middle of the aquifer	2.7 km away from the wellbore
8	Top of the aquifer	Adjacent to the wellbore	Middle of the aquifer	Adjacent to the wellbore

Figure 10 Cross sections of Models 1 to 8 show the brine extractor laterals at the top of the storage formation and the injector laterals at the either bottom of the aquifer (Models 1,2,5, and 6) or at the Middle of the aquifer (Models 3,4,7, and 8). Brine is extracted 2.7 km away from the well bore in the four left Models (1, 2, 3 and 4) whereas is extracted at adjacent to the well bore in Model 5, 6, 7, and 8 (four right models). Dissolved CO₂ in brine is injected into the storage formation 2.7 km away from the well bore in the four left Models (1, 3, 5, and 7) and at adjacent to the well bore in the four right Models (2, 4, 6, and 8) respectively.

The viscous force is the main driving force when dissolved CO₂ is injected into the aquifer. 355 The injected fluid tends to migrate towards the brine extractor lateral where the pressure is 356 lower. However, even after 100 years of dissolved CO_2 injection into the storage formation, 357 the dissolved CO₂ does not reach the brine extractor perforations, except in Models 6 and 8 358 due to shorter distance between injection and producer points than in other models (Figure 359 11). All the free phase CO_2 was dissolved prior to injection into the storage formation. 360 Dissolved CO₂ in brine is heavier than fresh brine and thus the CO₂ saturated brine tends to 361 sink in the aquifer under gravity. 362

Models 6 and 8 are not of further interest due to the small distance between the perforation at 363 the injector lateral and extractor lateral that could allow dissolved CO₂ to reach the extraction 364 region. In all other models (1, 2, 3, 4, 5, 7) dissolved CO₂ does not reach the perforations at 365 the extractor lateral. Therefore, all these models are acceptable for further study. However, 366 further screening was performed based on the length of the laterals (which determines the 367 cost), and the pressure loss. Model 1 provides the biggest distance between the extraction 368 region and the injection region among all models, therefore it can be considered as the safest 369 scenario. On the other hand, Model 4 could be the best option because of: 370

371 372

373

1. The lowest frictional pressure loss in the wellbore.

2. The minimum length of high chromium steel needed.

Figure 11 CO₂ mole fractions dissolved at the end of injection period (100 years). Models 1 376 to 8 show the brine extractor lateral at the top of the storage formation and the injector 377 lateral at either the bottom of the aquifer (Models 1,2,5, and 6) or at the middle of the aquifer 378 379 (Models 3,4,7, and 8). Brine is extracted 2.7 km away from the well bore in the four left Models (1, 2, 3 and 4) whereas it is extracted adjacent to the well bore in Models 5, 6, 7, and 380 8 (four right models). Dissolved CO_2 in brine is injected into the storage formation 2.7 km 381 away in the four left Models (1, 3, 5, and 7) and adjacent to the well bore in the four right 382 Models (2, 4, 6, and 8) respectively. 383

384 CO₂ Storage Capacity

Table 2 shows the amount of CO₂ can be dissolved in water with 3 different salinities (35000 mg/l, 100000 mg/l and 200000 mg/l) at depths of 1000 m. This analytical calculation is made
based on Spycher and Pruess (2005).

388

Table 2: Amount of CO₂ which can be dissolved in brine at different conditions

Depth	Pressure	Temperature	Salinity	CO ₂ dissolved
(m)	(bar)	(C)	(mg/l)	(kg/m ³)
			35000	50.583
1000	100	35	100000	39.34
			200000	29.067

389

The density of CO_2 at 100 bars and 35 C equals 713.68 kg/m³ and at standard conditions (15 C and 1 bar) equals 1.85 kg/m³. In our calculation 39.34 kg CO_2 can be dissolved in 1 m³ brine (NaCl, 100,000mg/l). Thus, the amount of CO_2 that can be dissolved at this reservoir condition in 6175 m³ brine equals 242924.5 kg.

Assuming mass conservation, then 0.088 Mt CO₂/year per well can be dissolved down-hole 394 395 and injected into the aquifer at the aforementioned condition. The target of injecting 1 MT CO₂/year can be achieved by drilling 11 wells. This calculation depends on the P, T, salinity, 396 and the reservoir volume injection rate. For a reservoir with lower salinity (e.g. 35,000 ppm 397 at the brine extractor points) with the same T, P, and reservoir volume injection rate just 8 398 wells are needed to inject 1 MT dissolved CO₂ in brine/year. Drilling engineering enables us 399 400 to use dual completion and multi-lateral well techniques so more laterals could be used for brine extraction and CO₂ saturated brine injection. This results in reducing the number of 401 required wells for CO₂ injection. The model indicates the amount of dissolved CO₂ which 402 could be injected per well per year. However, at this stage, no detailed modelling of the 403 mixing process in the well has been carried out. 404

The impact of injection of carbonated water would also be to stimulate the near wellbore, akin to acid stimulation (Fredd and Fogler, 1998), but on a continuous rather than batch basis. This would be different from any stimulation arising from pure CO_2 injection with subsequent dissolution in the brine phase, since such dissolution would, in the main, take

place away from the sand face. In this latter case, CO₂ would dissolve in the formation brine, 409 and this acid brine will quickly be displaced from the near well zone, with less than one local 410 pore volume of acid brine contacting the near wellbore rock. Any residual water would also 411 be acidified, but any dissolution of rock would buffer this brine, and no further dissolution 412 would take place. However, continuous injection of carbonated water will result in many 413 multiple pore volumes of unbuffered acid brine flowing through the near wellbore zone, and 414 this is the part of the system where rock dissolution and increase of local permeability will 415 have the greatest impact. 416

417 Conclusions and Recommendations:

418 The results indicate that CO₂/brine down-hole mixing could improve CO₂ sequestration. This reservoir simulation study demonstrates that the upward migration of CO₂ in the reservoir can 419 420 be limited to viscous effects during the injection period, and that during the subsequent shutin period gravity segregation displaces the CO₂ saturated brine downwards, thereby 421 increasing the storage safety. The limitation of the proposed method is that the amount of 422 CO₂ that can be injected in one well is restricted. Injecting at a much higher total volume rate 423 424 will increase the bottom hole pressure (BHP). On the other hand, it will be single rather than two-phase injection, and the acid brine may additionally stimulate the formation. The BHP 425 will be higher for this method than if the CO_2 were injected without brine, but the increase 426 427 will be somewhat mitigated by these two factors (single phase injection and acidic fluid stimulation). Also, the overall field average pressure will be the same as if the CO_2 were 428 injected without brine, as the overall material balance is the same. 429

430 Calculations were performed to identify the optimum level and length of water extraction and injection of dissolved CO₂ in brine. In terms of the minimum length of corrosion-resistant 431 432 tools and frictional pressure loss, the most efficient model is the one where the brine extraction lateral is completed away from the borehole whereas the CO₂ saturated injection 433 434 lateral is close to the borehole. The former is to maximize the distance between extraction and injection and the latter is to minimize the need for having high chromium steel. This 435 technique provides the opportunity for much more secure storage of CO₂ than is currently 436 envisaged by conventional injection of CO₂ alone. Less attention needs to be paid to caprock 437 integrity using this method of storage, and appraisal and monitoring costs may be vastly 438 reduced. More secure storage of CO₂ will be of interest to organisations involved in CCS 439

440 projects, regulators, and other stakeholders, such as environmental organisations and the 441 general public.

- 442 Having demonstrated that the concept can be used to maximise storage capacity and security,
- 443 recommendations for future work include a full economic calculation to evaluate the use of a
- 444 dual completion, instead of a new well, and also to compare economically this method with
- all other proposed methods for CO₂ injection.

446 Acknowledgements

- We thank Schlumberger for the use of ECLIPSE 300 and Petrel. The authors wish to thank
 the Scottish Carbon Capture and Storage (SCCS) Consortium and Foundation CMG for
- 450 funding this work.
- 451

455

459

463

466

469

473

477

452 **References:**

- ANCHLIYA, A., EHLIG-ECONOMIDES, C., JAFARPOUR, B., 2012. Aquifer Management to
 Accelerate CO₂ Dissolution and Trapping. *SPE Journal*, 17 (3): 805-816.
- BACHU, S., & CELIA, M. A. (2009). Assessing the potential for CO₂ leakage, particularly through
 wells, from geological storage sites. *Carbon sequestration and its role in the global carbon cycle. AGU Monograph*, 203-216.
- BERGMO, P. E. S., GRIMSTAD, A. A., & LINDEBERG, E., 2011. Simultaneous CO₂ injection and
 water production to optimise aquifer storage capacity. *International Journal of Greenhouse Gas Control*, 5(3), 555-564.
- BENSON, S. M., & COLE, D. R., 2008. CO2 sequestration in deep sedimentary formations.
 Elements, 4(5), 325-331.
- BLYTON, C. A., & BRYANT, S. L. (2013). Mass Transfer Coefficient for CO 2 Dissolution in
 Brine. *Energy Procedia*, 37, 4437-4444.
- BURTON, M., BRYANT, S.L., 2009. Eliminating buoyant migration of sequestered CO₂ through
 surface dissolution: implementation costs and technical challenges. SPE Reserv. Eval. Eng.
 12 (3), 399–407.
- 474 CAMERON, D.A., DURLOFSKY, L.J., 2012. Optimization of well placement CO₂ injection rates,
 475 and brine cycling for geological carbon sequestration. Int. J. Greenh. Gas Control 10, 100–
 476 112.
- 478 CELIA, M. A., S. BACHU, J. M. NORDBOTTEN, AND K. W. BANDILLA., 2015. Status of CO₂
 479 storage in deep saline aquifers with emphasis on modeling approaches and practical
 480 simulations, Water Resour. Res., 51, 6846–6892, doi:10.1002/2015WR017609.

481 482 CELIA, M. A., NORDBOTTEN, J. M., COURT, B., DOBOSSY, M., & BACHU, S., 2011. Field-483 scale application of a semi-analytical model for estimation of CO₂ and brine leakage along old wells. International Journal of Greenhouse Gas Control, 5(2), 257-269. 484 485 CHOLEWINSKI, A., LEONENKO, Y., 2013. Ex-situ dissolution of CO₂ for carbon sequestration. 486 487 Energy Procedia 37, 5427–5434. 488 489 DUAN, Z., SUN R., 2003. An improved model calculating CO₂ solubility in pure water and aqueous 490 NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol. 193 (3-4), pp. 257-491 271. EMAMI-MEYBODI, H., HASSANZADEH, H., GREEN, C. P., & ENNIS-KING, J., 2015. 492 493 Convective dissolution of CO_2 in saline aquifers: Progress in modeling and experiments. 494 International Journal of Greenhouse Gas Control. 495 ENNIS-KING, J. & PATERSON, L., 2003. Role of Convective Mixing in the Long-Term Storage of 496 497 Carbon Dioxide in Deep Saline Formations. SPE Annual Technical Conference and 498 Exhibition. Denver, Colorado: Society of Petroleum Engineers. 499 ENNIS-KING, J., PRESTON, I. & PATERSON, L., 2005. Onset of convection in anisotropic porous 500 media subject to a rapid change in boundary conditions. Physics of Fluids, 17, 084107. 501 502 503 EKE, P.E., NAYLOR, M., HASZELDINE, S., CURTIS, A., 2011. CO₂ /brine surface dissolution and 504 injection: CO₂ storage enhancement. SPE Proj. Facil. Constr. 6 (1), 41–53. 505 FREDD, C.N., FOGLER, H.S., 1998. Alternative Stimulation Fluids and Their Impact on Carbonate 506 Acidizing. SPE Journal, March 1998, 34-41 507 508 GANJDANESH, R., BRYANT, S., ORBACH, R., POPE, G., & SEPEHRNOORI, K. 2014. Coupled 509 carbon dioxide sequestration and energy production from geopressured/geothermal 510 511 aquifers. SPE Journal, 19(02), 239-248. 512 513 GANJDANESH, R., POPE, G. A., SEPEHRNOORI, K. 2015. Production of energy from saline 514 aquifers: a Method to offset the energy cost of carbon capture and storage. International Journal of Greenhouse Gas Control, 34, 97-105. 515 516 517 GASDA, S.E., BACHU, S., CELIA, M.A., 2004. Spatial characterization of the location and potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. 518 Environ. Geol. 46 (6–7), 707–720. 519 520 521 HASSANZADEH, H., POOLADI-DARVISH, M., KEITH, D.W., 2009. Accelerating CO₂ dissolution in saline aquifers for geological storage - mechanistic and sensitivity studies. 522 Energy Fuels 23 (6), 3328-3336. 523 524 525 HASZELDINE, R.S., 2009. Carbon capture and storage: how green can black be? Science 325 526 (5948), 1647–1652. 527

528 529 530 531	IPCC., 2005. IPCC Special Report on Carbon Dioxide Capture and Storage. In: METZ, B., DAVIDSON, O., DE CONINCK H.C., LOOS, M., MEYER, L.A. (Eds.), Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, NY, USA, 442 pp.
532 533 534 535 536	KEITH, D.W., HASSANZADEH, H., POOLADI-DARVISH, M., 2005. Reservoir engineering to accelerate dissolution of stored CO ₂ in brines. In: Proceedings of the Seventh International Conference on Greenhouse Gas Control Technologies (GHGT-7), Vancouver, Canada.
537 538 539 540	 KUMAR, A., OZAH, R., NOH, M., POPE, G.A., BRYANT, S., SEPEHRNOORI, K., AND LAKE, L.W., 2005. Reservoir Simulation of CO₂ Stoareg in Deep Saline Aquifers. SPEJ 10 (3): 336-348.
541 542 543	LEONENKO, Y., KEITH, D.W., 2008. Reservoir engineering to accelerate the dissolution of CO ₂ stored in aquifers. Environ. Sci. Technol. 42 (8), 2742–2747.
544 545 546 547	LEONENKO, Y., KEITH, D.W., POOLADI-DARVISH, M., HASSANZADEH, H., 2006. Accelerating the dissolution of CO ₂ in aquifers. In: Proceedings of the Eighth International Conference on Greenhouse Gas Control Technologies (GHGT-8), Trondheim, Norway.
548 549 550	MATHIESON, A., MIDGELY, J., WRIGHT, I., SAOULA, N., & RINGROSE, P. (2011). In Salah CO ₂ Storage JIP: CO ₂ sequestration monitoring and verification technologies applied at Krechba, Algeria. <i>Energy Procedia</i> , 4, 3596-3603.
551 552 553 554 555	NEWELL, A. J., & SHARIATIPOUR, S. M., 2016. Linking outcrop analogue with flow simulation to reduce uncertainty in sub-surface carbon capture and storage: an example from the Sherwood Sandstone Group of the Wessex Basin, UK. <i>Geological Society, London, Special Publications</i> , 436, SP436-2.
556 557 558	NORDBOTTEN, J.M., CELIA, M.A., BACHU, S., DAHLE, H.K., 2005. Semianalytical solution for CO ₂ leakage through an abandoned well. Environ. Sci. Technol. 39 (2), 602–611.
559 560 561 562 563	PATERSON L., BOREHAM C., BUNCH M., DANCE T., ENNIS-KING J., FREIFELD B., HAESE R., JENKINS C., LA FORCE T., RAAB M., SINGH R., STALKER L. And ZHANG Y. (2013) Overview of the CO2CRC Otway residual saturation and dissolution test, <i>Energy</i> <i>Procedia</i> , 37, 6140-6148.
564 565	POOL, M., CARRERA, J., VILARRASA, V., SILVA, O., AYORA, C., 2013. Dynamics and design of systems for geological storage of dissolved CO ₂ . Adv. Water Res. 62, 533–542.
567 568	QI, R., LAFORCE, T.C., BLUNT, M.J., 2009. Design of carbon dioxide storage in aquifers. Int. J. Greenh. Gas Control 3 (2), 195–205.
509 570 571 572	SALIMI, H., & WOLF, K. H. 2012. Integration of heat-energy recovery and carbon sequestration. <i>International Journal of Greenhouse Gas Control</i> , 6, 56-68.

573	SIGFUSSON, B., GISLASON, S. R., MATTER, J. M., STUTE, M., GUNNLAUGSSON, E.,
574	GUNNARSSON, I., & WOLFF-BOENISCH, D., 2015. Solving the carbon-dioxide
575	buoyancy challenge: The design and field testing of a dissolved CO_2 injection system.
576	International Journal of Greenhouse Gas Control, 37, 213-219.
577	
578	SCHLUMBERGER., 2012. ECLIPSE Technical Manual.
579	
580	SHAFAEI, M. J., ABEDI, J., HASSANZADEH, H., & Chen, Z. (2012). Reverse gas-lift technology
581	for CO_2 storage into deep saline aquifers. Energy, 45(1), 840-849.
582	
583	SHARIATIPOUR, S. M., PICKUP, G. E., & MACKAY, E. J., 2014. The Effect of Aquifer/Caprock
584	Interface on Geological Storage of CO ₂ . Energy Procedia, 63, 5544-5555.
585	
586	SHARIATIPOUR, S.M., PICKUP, G.E., AND MACKAY, E.J., 2012. The Impact of
587	Aquifer/Caprock Morphology on CO ₂ Storage in Saline Aquifers. In Fault and Top Seals.
588	
589	SMITH, M., CAMPBELL, D, MACKAY, E. AND POLSON, D., 2012. CO2 Aquifer Storage Site
590	Evaluation and Monitoring. SCCS. ISBN: 978-0-9571031-0-8.
591	
592	SPYCHER N.F. AND PRUESS K., 2005. CO ₂ -H ₂ O mixtures in the geological sequestration of
593	CO ₂ . II. Partitioning in chloride brines at 12–100 °C and up to 600 bars, Geochim.
594	Cosmochim. Acta 69 (13), pp. 3309–3320.
595	
596	TAKU IDE, S., JESSEN, K., ORR JR., F.M., 2007. Storage of CO ₂ in saline aquifers: effects of
597	gravity, viscous, and capillary forces on amount and timing of trapping. Int. J. Greenh. Gas
598	Control 1 (4), 481–491.
599	
600	TAO, O., BRYANT, S., 2014. Optimization of injection/extraction rates for surface-dissolution
601	process. Soc. Pet. Eng. J. 19 (4), 598–607.
602	
603	RIAZ, A., HESSE, M., TCHELEPI, H. A. & ORR, F. M., 2006. Onset of convection in a
604	gravitationally unstable diffusive boundary layer in porous media <i>Journal of Fluid</i>
605	Mechanics 548 87-111
606	
607	ZENDEHBOUDI S SHAFIEI A BAHADORI A LEONENKO Y CHATZIS I 2013
608	Dronlets evolution during ex situ dissolution technique for geological CO, sequestration:
600	Displicits evolution during ex situ dissolution technique for geological Co_2 sequestration.
610	experimental and mathematical moderning. Int. J. Greenin. Gas Control 15, 201–214.
610	ZIDDAULM HASSANZADELLU AND ADEDLUL 2012 The Laboratory testing and easle up of a
611	ZIRRAHI M., HASSANZADEH H., AND ABEDU J., 2015. The Laboratory testing and scale-up of a
612	downnole device for CO_2 dissolution acceleration, <i>international Journal of Greenhouse Gas</i>
613	<i>Control</i> , 16, 41-49.
614	
615	ZIKKAHI, M., HASSANZADEH, H., & ABEDI, J. 2013. Modeling of CO 2 dissolution by static
616	mixers using back flow mixing approach with application to geological storage. <i>Chemical</i>
617	Engineering Science, 104, 10-16.
618	
619	ZHANG, Z., AGARWAL, R.K., 2012. Numerical simulation and optimization of CO ₂ sequestration

620 in saline aquifers for vertical and horizontal well injection. Comput. Geosci. 16 (4), 891–899.

621

ZHANG, Z., AGARWAL, R.K., 2013. Numerical simulation and optimization of CO₂ sequestration
 in saline aquifers. Comput. Fluids 80, 79–87.