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Abstract 9 

Studies of oil reservoirs show that unconformities may occur between the reservoir and the 10 

caprock.  At the boundary where the unconformity occurs, there may be a layer of higher 11 

permeability compared to caprock.  Such traps may occur at CO2 storage sites, and therefore 12 

their effect should be investigated. In this work, we simulate CO2 storage beneath angular 13 

unconformities, where sandstone layers have been tilted and eroded prior to the deposition of a 14 

caprock.  After preliminary studies into the effect of gridding such traps, we describe simulations 15 

of a range of 2D and 3D models. The results reveal that migration of CO2 is influenced by the 16 

lithology beneath the unconformity which could have been modified by weathering or 17 

diagenesis. This can have both positive and negative effects on CO2 storage capacity and 18 

security. It shows that an unconformity model which has a layer of high permeability at the 19 

interface between the aquifer and the caprock, as a result of weathering or diagenesis, can 20 

contribute to pressure diffusion across the reservoir. This could improve CO2 sequestration by 21 

providing pathways for CO2 migration to access other parts of the storage complex. On the other 22 

hand, this could have a negative effect on the security of CO2 storage by providing pathways for 23 

CO2 to migrate out of the storage formation and increase the risk of CO2 leakage. 24 
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Introduction 28 

Carbon Capture and Storage (CCS) is a possible option to significantly mitigate anthropogenic 29 

CO2 emissions to the atmosphere (Bruant et al. 2002; IPCC 2005). Deep saline formations offer 30 

the greatest capacity for CO2 storage (Gunter et al. 1998; Celia et al. 2002; IPCC 2005; SCCS 31 

2009).  Such aquifers are widely distributed (Firoozabadi and Cheng 2010) and they are the most 32 

promising formations for subsurface storage worldwide (Orr, 2009). The total P50 theoretical 33 

storage capacity for the UK continental Self (UKCS) is estimated to be around 60 Gt in saline 34 

aquifer formations (Bentham et al. 2014). Many studies of CO2 storage assume a smooth 35 

interface with a sharp transition from aquifer to caprock, whereas typically the surface is 36 

irregular, due to the sedimentological setting and structural deformation.  For example the CO2 37 

plume in the Utsira formation at the Sleipner storage site has an irregular outline at the top of 38 

the aquifer, as imaged using seismic data (Chadwick and Noy, 2010). The importance of 39 

characterisation of the interface between the caprock and the aquifer was investigated by 40 

Shariatipour et al. (2012; 2014), Nilsen et al. (2012), Goater et al. (2013) and Newell and 41 

Shariatipour (2016). This work follows on from the aforementioned studies, and investigates the 42 

effect of unconformable interfaces on the storage capacity and security, an issue which has not 43 

been studied previously.  44 

A structural or stratigraphic trap is an important criterion for CO2 sequestration. Structural and 45 

stratigraphical trapping occurs where the migration of free phase CO2 is prevented by low 46 

permeability layers (caprocks) such as layers of mudstone (Chadwick et al. 2008). Usually, there 47 



is a major gap in the geological sequence between one rock and overlaying strata, because of 48 

non-deposition and/or erosion; this is known as an unconformity (Sloss 1963). Unconformities 49 

have been studied extensively, especially because of the types of trap they provide for oil and 50 

gas in geological formations. In the North Sea and several other sedimentary basins, a style of 51 

trapping is found which results from the truncation of inclined permeable beds by a very low 52 

permeable unconformity surface (Archer and Wall 2012). For example, in the Viking Graben area 53 

of the northern North Sea, the Brent Sand reservoirs are characteristically faulted deltaic sands 54 

truncated by the Cretaceous unconformity (Archer and Wall 2012). In Weyburn in Saskatchewan 55 

in Canada there is a zone, ranging in thickness from 2 to 10m, immediately underneath the Sub-56 

Mesozoic Unconformity surface, in which the petrophysical properties have been altered as a 57 

result of a combination of dolomitisation, micritisation and anhydritisation and this has made a 58 

highly effective seal to fluid migration (Whittaker 2004). Unconformity traps are broadly 59 

identified as a class of stratigraphic traps, but they may be influenced by diagenetic processes 60 

(Rittenhouse 1972; Biddle and Wielchowsky 1994). There are four types of unconformity: 61 

angular unconformity, disconformity, paraconformity and non-conformity (Dunbar and Rogers 62 

1957). In this work the focus is on angular unconformities. An angular unconformity is caused by 63 

erosion of underlying sediments that have been previously folded or tilted.  64 

The term “unconformity surface” is used here to describe the following scenarios. Just above 65 

the unconformity, or just below it, there may be a high or low permeability layer. The high 66 

permeability layer could be the result of weathering and erosion at the top of the older layer, or 67 

could be due to the deposition of coarse-grained sediments on top of the unconformity surface 68 

(Swierczek, 2012). Swierczek (2012) studied the base Permian Unconformity in the Southern 69 

North Sea and describes a theory that a zone just beneath the Permian unconformity had been 70 

weathered, and consequently the permeability and the porosity of this zone had increased 71 



dramatically (average porosity changed from 0.1 to 0.2 and average permeability changed from 72 

0.1-10 mD to 500 mD) (Besly et al, 1993). The existence of a high permeability layer at the 73 

unconformity surface has also been noted at the other locations around the world. For example, 74 

Rogers et al. (2006) studied the Belfast Bay in the western Gulf of Maine and presented 75 

evidence that an unconformity surface can act a conduit for gas migration. They believed that 76 

the gas migrates along the Pleistocene/Holocene unconformity surface through a coarse-77 

grained layer which is much more permeable than the rest of the mudstone, and varies in 78 

thickness from decimeters to two metres. In another work by Cao et al. (2005), lateral fluid 79 

migration along an unconformity surface was confirmed through their study of the Permian 80 

petroleum system in the northwest margin of the Junggar Basin. Fengjun et al. (2001) studied 81 

lateral migration pathways of hydrocarbons in the Pearl River Mouth Basin, South China Sea. 82 

They concluded that oil and gas migrates laterally through an unconformity surface where there 83 

is high porosity and permeability sandstone deposited. In this work, the effect such a structure 84 

has on CO2 storage is studied.  85 

Outline of the Paper 86 

This paper consists of three sections. In the first section, due to the slope of the layers in an 87 

angular unconformity, an investigation on the effect of gridding type on CO2 storage will be 88 

described before outlining the modelling of the unconformity. In the second section, 2D models 89 

will be presented and in the third section, 3D modelling will be discussed. A number of 2D and 90 

3D numerical simulations were conducted to study the impact of unconformities on CO2 91 

storage. All models were constructed in Petrel, and the reservoir models were input to the 92 

ECLIPSE reservoir simulator.  93 

 94 



Section 1: An investigation on the effect of gridding type on CO2 Storage 95 

Spatial discretisation is used to perform the numerical block to block flow calculations in fluid 96 

flow simulation. In geo-modelling software there are different options to grid the models. 97 

During model construction, when dividing the zones into different layers, the layer thicknesses 98 

can be proportional to the thickness of the zone, fractional, or follow the top or the base of the 99 

zone, allowing for onlap and truncation to be represented as appropriate. When simulating CO2 100 

storage in an aquifer, the calculated CO2 migration pathway may depend on the type of gridding 101 

used. In this study the effects of different gridding techniques were investigated. Two sets of 102 

grids were examined, the first corresponding to a regular 100×1×71 flat grid (Model CG, 103 

Figure 1), and the second corresponding to a 50×1×131 tilted grid (corner point geometry) 104 

(Model TG, Figure 1). Both models have the same pore volume and each model is divided into 105 

three sections. The upper part of the models, which consists of a single layer, corresponds to the 106 

caprock. The second part, referred to as the interface between caprock and storage formation, 107 

consists of ten layers. Regular Cartesian grid cells are used in these layers in both models. The 108 

third part, which is assumed to be the storage aquifer, is different in terms of grid orientation. In 109 

Model CG, a regular Cartesian grid was used and the aquifer was discretised into 50 layers in the 110 

vertical direction, each layer being 5 m thick. For Model TG, although the thickness of each layer 111 

is the same as in Model CG, the numbers of layers (120) is greater, as they dip at an angle of 112 

1.72.  113 

When CO2 is injected into an aquifer, it migrates upwards due to buoyancy. The upward 114 

migration may be delayed due to the presence of low permeability layers (Juanes et al. 2006; 115 

Flett et al. 2007). However, the CO2 will eventually reach a low permeability caprock and then 116 

begins to migrate laterally (Emami-Meybodi et al. 2015). In Model TG, at the top of the storage 117 

formation where the tilted grid cells meet the regular horizontal grid cells, all of the tilted grid 118 



cells pinch out. The aquifer was assumed to be homogeneous: the aquifer (sand) was assigned a 119 

permeability of 1000 mD and a porosity of 0.25, and the other zones (caprock and interface) 120 

were assigned a permeability of 1×10-6 mD and a porosity of 0.1. An injector was placed on the 121 

left hand side of both 2D models. The wells were controlled by the surface injection rate which 122 

was 1,000,000 m3/day with a maximum pressure limit of 200 bars. The injectors were shut in 123 

after 50 years and the simulations were continued for 1000 years. Zero-flow boundaries were 124 

assumed to be present at all models edges. The same fluid and rock properties were used for 125 

both models. The initial pore fluid pressure was assumed to be hydrostatic, around 90 bar at the 126 

top of the storage structure.  127 

Results 128 

Figure 2 shows lateral migration of CO2 at the top of the aquifer in Models CG and TG at 129 

different time steps. At the very top of the aquifer in Model CG, CO2 migrates laterally away 130 

from the injector. In Model TG, the CO2 cannot migrate laterally by moving horizontally from 131 

one cell to the next, due to the cells pinching out. CO2 must move to a stratigraphically lower 132 

(deeper) cell before migrating laterally (Figure 2). The difference in CO2 migration in these 133 

models can be observed from Figure 2 where CO2 migrates further away from the injector at the 134 

top of the aquifer in Model CG compared to Model TG. For example, in Model CG at the 11th
 

135 

time step CO2 reached 600m (the 6th
 
cell) on the right hand side of the injector (left diagram), 136 

whereas in Model TG, at the same time step, CO2 reached 500m (the 5th
 
cell) on the right hand 137 

side of the injector (right diagram).   138 

Figure 3 demonstrates the distribution of the CO2 plume in Models CG and TG at the end of the 139 

post injection period. It is clear that the plume migrates further (around 800m) in Model CG 140 

than Model TG. However, the thickness of the plume in Model TG is greater than that in Model 141 



CG. This is because of the way that cells are oriented at the top of the aquifer in Model TG; 142 

subsequently there is more accumulation of CO2 at the top of the aquifer. Regarding the amount 143 

of CO2 dissolved in brine, in Model CG (regular Cartesian grids), CO2 migrates further at the top 144 

of the aquifer than Model TG, and so more free phase CO2 is in contact with the fresh brine 145 

resulting in more CO2 dissolution (10% increase) in Model CG than Model TG (Figure 4). Since 146 

there is more dissolution in Model CG, there is less free CO2 and therefore the average field 147 

pressure is lower.  148 

Discussion on the effect of type of gridding on CO2 Storage 149 

This part of the study compares the effect of different gridding techniques available in the 150 

reservoir simulator for the simulation of CO2 storage in aquifers. The results reveal that the 151 

calculations are sensitive to the gridding choices made. Specifically, where there are some tilted 152 

layers it may be necessary to use a tilted grid to represent some of these layers. The current 153 

study shows that using a tilted grid for tilted layers in the storage formation leads to a decrease 154 

in the distance migrated by the CO2, both during injection and during the post injection period. 155 

This effect is more significant where these inclined grids pinch out such as, in Model TG at the 156 

top of the aquifer.  157 

The results demonstrate that the way in which the model is gridded affects the CO2 migration 158 

distance and the amount of dissolution. The main reason is due to the inclined cells pinching out 159 

at the top of the storage formation in the tilted grid model.  In this model CO2 must move to a 160 

lower (deeper) cell before migrating laterally and therefore it migrates a shorter distance from 161 

the injector than in the regular Cartesian grid model. This fact does not affect our modelling 162 

results in the next section, because all the models will be constructed in the same manner. 163 

Regular flat Cartesian grid will be used for the 2D models and corner point geometry will be 164 



used for the 3D models and then the results of equivalently gridded systems are compared. 165 

Section 2: 2D Models 166 

This is an analysis of the effect of a thin conductive layer (as a result of weathering at the 167 

unconformity surface) at the aquifer-caprock interface. The rationale for conducting this 168 

modelling is based on the results of research by Swierczek (2012) on the role of unconformities 169 

in controlling reservoir properties. A 2D model with a length of 10 km, thickness of 400 m, and a 170 

width of 100 m was used (Figure 5). This model was devised to investigate migration out of 171 

Aquifer 1, which was assumed to be the storage formation. Seven Models were considered 172 

(Table 1). The only difference between Model 1, Model 2, and Model 3 being the thickness of 173 

the high permeability layer beneath the caprock. The thickness of the high permeability layer in 174 

Model 1, Model 2, and Model 3 was 100 cm, 10 cm, and 1 cm respectively. The aquifers were 175 

assumed to be homogeneous. The aquifers and the thin layer below the caprock were assigned 176 

a permeability of 1000 mD and a porosity of 0.25, and the other reservoir lithologies were 177 

assigned a permeability of 1×10-6 mD and a porosity of 0.1. To investigate the effect of grid 178 

refinement, Model 1 was modified to Model 4 by refining the highly permeable layer below the 179 

caprock from one layer to ten layers. Model 5 is based on Model 4, but the perforations in the 180 

injector well were at the lower part of Aquifer 2 while the location of the injector was the same 181 

as in Model 4. Models 6 and 7 are the same as Models 4 and 5, respectively, apart from the 182 

properties of the layer below the caprock. In these cases, the high permeability layer was 183 

replaced with low permeability rock, equal to the permeability of the caprock, and the interface 184 

region (R2) was assumed to be part of R1 (See Figure 5). To aid in the description of the results, 185 

the models were divided into seven regions (Table 2 and Figure 5).  186 

A single injector was placed on the left hand side of model and CO2 injected through 187 



perforations at the bottom of Aquifer 1 (R4) was simulated. The well was controlled by surface 188 

rate (20,000 m3/day) with a maximum pressure limit of 229 bars. However, in all models studied 189 

here the same volume of CO2 was injected, since as the pressure did not reach the limiting 190 

bottom-hole pressure. The injector was shut in after 50 years and the simulation was continued 191 

for 200 years.  192 

Results and Discussions for 2D Models 193 

In Models 1–3, CO2 injected into Aquifer 1 is able to migrate to Aquifer 2 via the high 194 

permeability layer at the interface between storage formation and caprock.  In Model 1 (which 195 

had the thickest high permeability layer) the free phase CO2 migrates more easily through the 196 

high permeability layer than in Model 3; consequently there is more CO2 dissolved in Aquifer 2 197 

in Model 1 than in Model 3 (Figure 6 and Figure 7). However, more CO2 is dissolved in Model 3 198 

overall due to the greater pressure increase compared to Model 1 in Aquifer 1. Figure 8 199 

illustrates the pressure increase in Models 1, 2, and 3 (all models had the same initial reference 200 

pressure constraint). In Model 1, the case with the thickest high-permeability layer beneath the 201 

cap rock, this high-permeability layer strongly contributes to the pressure diffusion from Aquifer 202 

1 to Aquifer 2 at the end of the injection period. However, in Model 3 this is not the case 203 

because it has the thinnest high permeability layer (Figure 8). Interestingly, 200 years after the 204 

well is shut in, the average pressure in Aquifer 2 in Model 1 exceeded the average pressure in 205 

Aquifer 1 whereas in Model 3 the average pressure in Aquifer 1 did not change significantly from 206 

the average pressure at the end of injection. Figure 9 compares the average pressure in each 207 

region in Models 1 and 3. The average pressures in the low permeability layers are the same 208 

both at the end of the injection period and the post injection period. However, the pressure in 209 

the high permeability unconformity interfaces (Region 2) increases due to the gas migration 210 



through them (Figure 9). In Model 3 the average pressure in Aquifer 2 (R6) is lower than Aquifer 211 

1 (R4) even 200 years after well shut in due to lower CO2 migration into it.  212 

In Model 3, compared to Model 1, more CO2 is dissolved in brine in Aquifer 1 (R4) because the 213 

pressure is increased (e.g. Spycher and Pruess, 2005). However, more CO2 is dissolved in Aquifer 214 

2 (R6) in Model 1 than Model 3 (Figure 10) due to greater CO2 migration through the 1 m thick 215 

permeability layer into that aquifer.  Model 4 is a refined version of Model 1, and in this case, 216 

there is slightly more free CO2 at the end of the post injection period than Model 1 (Figure 11) 217 

due to better resolution of the CO2 plume in the refined region in Model 4. Figure 12 compares 218 

the amount of CO2 dissolution in Models 4-7. Firstly, comparing Models 4 and 5, and 6 and 7, 219 

more dissolution of CO2 takes place when the well is perforated in Aquifer 2. This is because the 220 

CO2 migration path is greater in Aquifer 2, which encourages more dissolution. Comparing 221 

Models 4 and 6, and 5 and 7, there is more dissolution when there is no high permeability layer 222 

at the unconformity. This means that the CO2 is confined to a single aquifer, so the pressure 223 

increases, giving rise to more dissolution.  224 

Section 3: 3D Models 225 

Here a single 3D Model for an angular unconformity is presented (Figure 13). This figure shows a 226 

set of dipping layers which lie beneath the unconformity (shown by the dashed line) prior to the 227 

deposition of shale (cap rock). The model has dimensions of 5000 m × 10000 m × 400 m. The 228 

properties for the model were taken from Smith et al. (2012) (Lincolnshire model) and are listed 229 

in Table 3. Sequential Gaussian simulation was used to generate the porosity and permeability 230 

distribution. The correlation length was 1 km in the horizontal direction and 10 m in the vertical 231 

direction. The Model was discretised into 25×50×131 cells. Ten vertical wells were placed across 232 

the X direction on the left side of the Model. ECLIPSE 300 with the CO2STORE module was used 233 



for all the simulations which were carried out for a period of 250 years. Three components (CO2, 234 

Water and Salt) were considered. The models initially consisted of 100% brine, and 100% 235 

supercritical CO2 was injected during the injection period. All injectors were shut after 50 years 236 

and simulations were continued for 200 years. The same volume of CO2 was injected in all 237 

models. Both storage formations, aquifer 1 and aquifer 2 (Figure 13), contact the left side of the 238 

model. Therefore this side of the model was assumed open, and a porosity multiplier of 1000 239 

was applied to the left hand column to represent additional aquifer pore volume.  240 

To study the effect of the unconformity surface on CO2 storage in this 3D Model, four models (A, 241 

B, C and D) were defined by changing the properties of the 1 m thick layer just above the 242 

unconformity surface (Table 4). The permeabilities and porosities of that layer were varied from 243 

high values (Sandstone) to low values (Mudstone) to investigate the CO2 migration beneath the 244 

caprock. Model A, could be the result of material with high permeability being deposited. Model 245 

B (patchy interface), could be the result of material with low permeability also being deposited. 246 

In Model C there is no difference between the properties of this layer and the layers above it; in 247 

other words, this layer has the same properties as the caprock.  248 

Results and Discussion for 3D Models 249 

Figure 14, Figure 15 and Figure 16 show the CO2 gas saturation in brine for models A, B and C 250 

respectively, at the end of the injection period (50 years) and 200 years post injection. They 251 

illustrate how the unconformity surface affects the CO2 migration beneath the cap rock. After 252 

CO2 is injected into Aquifer 1 (Primary storage) near the lowest point of the aquifer, it migrates 253 

up dip due to buoyancy, until it reaches the caprock. Then, depending on the nature of the layer 254 

above the unconformity surface between the caprock and the storage formation, CO2 migrates 255 

laterally. If the unconformity surface has high permeability (e.g. Model A) the plume can easily 256 



migrate in all directions, away from injectors, beneath the caprock (Figure 14). There are 257 

advantages and disadvantages associated with this. Regarding the advantages, CO2 migrates 258 

laterally until it reaches another high permeability formation (e.g. aquifer 2 in this model). 259 

Therefore more CO2 is in contact with brine, so more CO2 dissolves, thus increasing storage 260 

capacity and security. On the other hand, CO2 escapes from the primary storage and therefore 261 

the structural trapping is not very effective.  Model B is similar to Model A, but with a more 262 

irregular CO2 distribution (Figure 15).  Model C demonstrates the importance of the layers 263 

underlying an aquifer when there is an unconformity. In Model C the properties of both layers 264 

below and above the primary storage are the same as the cap rock properties, and it acts as a 265 

seal; thus, it does not allow CO2 to migrate to Aquifer 2 (Figure 16).  266 

Sensitivity Analysis: Sensitivity to Thickness of Highly Permeable Layer above the Unconformity 267 

The thickness of the layer above the unconformity surface was initially 1 m, in Model A. In 268 

Model D it is increased to 10 m. In Model A there is a 1 m highly permeable layer whereas in 269 

Model D there is a 10 m highly permeable layer just above the unconformity surface. Figure 17 270 

compares the mole fraction of CO2 dissolved in brine in these two Models after the 50 years 271 

injection period (left images) and after 200 years post injection (right images). The results show 272 

that the thinner the highly permeable layer, the slower the lateral CO2 migration; hence more 273 

CO2 is dissolved near the injectors. During the post injection period, CO2 migrates slower in 274 

Model A than Model D. In Model D, the CO2 begins to fill Aquifer 2 once it has reached the top 275 

of this aquifer. This downward migration is controlled by the height of the CO2 column on the 276 

primary storage (on the left side of the model), as there is a closed boundary condition on the 277 

right hand side of model. 278 

Concluding remarks  279 



The positive and negative roles of an unconformity surface as an interface between caprock and 280 

storage formation on the CO2 sequestration has been studied in this paper. Firstly, the effect of 281 

gridding type on CO2 storage was investigated due to the dip of layers in an angular 282 

unconformity model. This effect is more significant where these inclined cells pinch out. The 283 

findings of this study are very important in modelling of CO2 storage as they show that selecting 284 

different types of gridding leads to an overestimate or an underestimate of the distance 285 

migrated by CO2 and the amount of dissolved CO2 in the aquifer. Secondly, the results show that 286 

an unconformity model which has a layer of high permeability at the interface between the 287 

aquifer and the caprock, as a result of weathering, can contribute to pressure diffusion across 288 

the reservoir. This could improve CO2 sequestration by providing pathways for CO2 migration to 289 

access other storage formations (provided CO2 does not migrate out of the storage complex). 290 

Therefore, with appropriate placement of the well in a case where there are stacked dipping 291 

aquifers, it is possible to maximize CO2 storage. The nature of the unconformity may not be 292 

known, because it would not normally be detected on seismic, and even if an anomalous 293 

permeability value is detected in a well log, the lateral extent may not be known.  Therefore, 294 

engineers will be unaware whether or not the CO2 would migrate from one formation to 295 

another. In the absence of a high permeability layer either above or below an unconformity, 296 

lateral migration of CO2 is limited. Pressure builds up, but the amount of dissolution increases. In 297 

addition, the existence of a high permeability layer at the unconformity surface could have a 298 

negative effect on the security of CO2 storage by providing path ways for CO2 to migrate out of 299 

the storage formation and increase the risk of CO2 leakage. 300 
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Figure captions 434 

Figure 1: Regular flat Cartesian grid (Model CG,Top picture) and Tilted grid (Model TG, Bottom 435 
Picture). 436 

Figure 2: Gas saturation at the top of the aquifer at 11th time step in Models CG and TG.  437 

Model CG, top picture (Cartesian grid) and Model TG, bottom picture (Tilted grid).  438 



Figure 3 CO2 Gas saturation at the end of post injection period (White arrow shows length of  439 

plume).  440 

Figure 4 CO2 dissolved in Water Phase in Both Models. 441 

Figure 5 Angular Unconformity 2D Model. R stands for Region.  442 

R2 refers to the unconformity surface and R7 consists of bottom three layers. 443 

Figure 6 Mole fraction of CO2 dissolved in brine at the end of injection period (50 years)  444 

Models 1 and 3.  445 

Figure 7 Mole fraction of CO2 dissolved in brine 200 Years after well shut in Models 1 and 3.  446 

Figure 8 Pressure increase in Models 1, 2, and 3. 447 

Figure 9 Average pressure in regions 1 to 7 at the end of injection period (left) and 200 years 448 
post-injection (right). 449 

Figure 10 The amount of CO2 dissolved in Models 1 and 3 at the end of injection period (left) and 450 
200 years post-injection (right). 451 

Figure 11 Average free CO2 Saturation in Models 1 and 4 at the end of injection period (left) and 452 
200 years post-injection (right). 453 

Figure 12 Total amount of CO2 dissolved in Models 4, 5, 6, and 7.  454 

Figure 13 3D Angular Unconformity Model, illustrating a group of tilted layers that lie  455 

beneath the unconformity (red line) prior to the deposition of shale (cap rock).  456 

Figure 14 Top picture shows CO2 gas saturation in the Model A at the end of injection  457 

period (50 years), bottom picture illustrates CO2 gas saturation in the Model A after 200 years 458 

 post injection.  459 

Figure 15 Top picture shows CO2 gas saturation in the Model B at the end of injection  460 

period (50 years), bottom picture illustrates CO2 gas saturation in the Model B after  461 

200 years post injection.  462 

Figure 16 Top picture shows CO2 gas saturation in the Model C at the end of injection  463 

period (50 years), bottom picture illustrates CO2 gas saturation in the Model C after 200  464 

years post injection. 465 



Figure 17 Model A with a 1m thick high permeability unconformity zone. Model D has a 466 

 10-m thick high permeability layer. Left pictures show mole fraction at the end of injection  467 

period (50 years) and the right pictures show the CO2 mole fraction at the end of post injection  468 

period (200 years).  469 

Table 1. 2D model details, HP refers to the case where there is a high permeability layer at the 470 
interface between storage formation and caprock; LP refers to a low permeability layer at the 471 
interface between storage formation and caprock. 472 

Model 
Thickness of 
conductive 
layer (m) 

Number of 
layers 

(Refinement) 

Primary 
storage 
target 

Perforations Permeability 

1 1 1 Aquifer 1 
bottom four layers of 

Aquifer 1 

HP 
 
 

2 0.1 1 Aquifer 1 
bottom four layers of 

Aquifer 1 
HP 

 

3 0.01 1 Aquifer 1 
bottom four layers of 

Aquifer 1 
HP 

 

4 1 10 Aquifer 1 
bottom four layers of 

Aquifer 1 
HP 

 

5 1 10 Aquifer 2 
bottom four layers of 

Aquifer 2 
HP 

 

6 1 10 Aquifer 1 
bottom four layers of 

Aquifer 1 
LP 

 

7 1 10 Aquifer 2 
bottom four layers of 

Aquifer 2 
LP 

 

 473 

 474 

 475 

 476 

Table 2. Regions in the 2D models 477 

Region Description 

Region 1 Caprock 

Region 2 Unconformity interface 



Region 3 Low permeable layer above Aquifer 1 

Region 4 Aquifer 1 

Region 5 Low permeable layer between Aquifer 1 and Aquifer 2 

Region 6 Aquifer 2 

Region 7 Low permeable layer below Aquifer 2 

 478 

Table 3. 3D Model properties. 479 

Formation 

Geometric 
Average 
Permeability         
(mD) 

Standard 
Deviation 
ln(Perm) 

Average 
Porosity 

Standard 
Deviation 
Porosity 

Porosity  

Minimum Maximum 

Sandstone 
(Aquifer) 

500 0.5 0.2 0.02 0.16 0.25 

Mudstone 
(Cap rock) 

0.006 0.1 0.1 0.03 0.06 0.20 

 480 

Table 4. 3D model details.  “Patchy” refers to the case where there is variable permeability in 481 
the layer between the storage formation and the caprock, so there are both high and low 482 
permeability cells at the interface.  (HP = high permeability, LH = low permeability.) 483 

Model 
Thickness of 
conductive 
layer (m) 

Primary 
storage 
target 

Perforations Permeability 

A 1 Aquifer 1 Aquifer 1 
 

HP 
 

B 1 Aquifer 1 Aquifer 1 
 

Patchy 
 

C 1 Aquifer 1 Aquifer 1 
 

LP 
 

D 10 Aquifer 1 Aquifer 1 
 

HP 
 

 484 



Figure 1: Regular flat Cartesian grid (Model CG,Top picture) and Tilted grid 
(Model TG, Bottom Picture).
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Figure 2: Gas saturation at the top of the aquifer at 11th time step in Models CG and TG. 
Model CG, top picture (Cartesian grid) and Model TG, bottom picture (Tilted grid). 
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Figure 3: CO2 Gas saturation at the end of post injection period (White arrow shows length of 
plume). 
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Figure 4: CO2 dissolved in Water Phase in Both Models.
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Figure 5: Angular Unconformity 2D Model. R stands for Region. 
R2 refers to the unconformity surface and R7 consists of the bottom three layers.
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Figure 6: Mole fraction of CO2 dissolved in brine at the end of injection period (50 years) 
Models 1 and 3. 
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Figure 7: Mole fraction of CO2 dissolved in brine 200 Years after well shut in Models 1 and 3. 



Figure 8: Pressure increase in Models 1, 2, and 3. 
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Transfer flow simulation results back onto the rock face

Gas saturation after 10 yrs of injection

Figure 9: Average pressure in regions 1 to 7 
at the end of injection period (left) and 200 years post-injection (right). 
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Transfer flow simulation results back onto the rock face

Gas saturation after 10 yrs of injection

Figure 10: The amount of CO2 dissolved in Models 1 and 3
at the end of injection period (left) and 200 years post-injection (right). 
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Transfer flow simulation results back onto the rock face

Gas saturation after 10 yrs of injection

Figure 11: Average free CO2 Saturation in Models 1 and 4
at the end of injection period (left) and 200 years post-injection (right). 
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Transfer f: Total amount of CO2 dissolved in Models 4, 5, 6, and 7. 

Gas saturation after 10 yrs of injection

Figure 12:
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Transfer flow simulation results back onto the rock face

Gas saturation after 10 yrs of injection

Figure 13: 3D Angular Unconformity Model , illustrating a group of tilted layers that lie 
beneath the unconformity (red line) prior to the deposition of shale (cap rock). 
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Transfer flow simulation results back onto the rock face

Gas saturation after 10 yrs of injection

Figure 14: Top picture shows CO2 gas saturation in the Model A at the end of injection 
period (50 years). Bottom picture illustrates CO2 gas saturation in the Model A after 200 years
post injection. 
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Transfer flow simulation results back onto the rock face

Gas saturation after 10 yrs of injection

Figure 15: Top picture shows CO2 gas saturation in the Model B at the end of injection 
period (50 years). Bottom picture illustrates CO2 gas saturation in the Model B after 
200 years post injection. 
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Transfer f: Top picture shows CO2 gas saturation in the Model C at the end of injection 
period (50 years), bottom picture illustrates CO2 gas saturation in the Model C after 200 
years post injection. low simulation results back onto the rock face

Gas saturation after 10 yrs of injection

Figure 16:
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Transfer flow simulation results back onto the rock face

Gas saturation after 10 yrs of injection

Figure 17: Model A with a 1m thick high permeability unconformity zone. Model D has a
10-m thick high permeability layer. Left pictures show mole fraction at the end of injection 

period (50 years) and the right pictures show the CO2 mole fraction at the end of post injection 
period (200 years).
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