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Abstract 16 
 17 

When investigating the storage of CO2 in deep saline formations, many studies assume a smooth, 18 

abrupt interface between the storage and the sealing formations. Typically, though, the surface is 19 

irregular, due to sedimentological and stratigraphic effects or structural deformation. In this study, the 20 

area where the CO2 migrates beneath the caprock is investigated. A set of numerical simulations were 21 

conducted to investigate the impacts of various factors on CO2 storage, such as top morphology, tilt, 22 

kv/kh ratio and the presence of a transition zone, where there is a gradational change from storage 23 

formation to caprock.  24 

In the models tested, the kv/kh ratio was most important during the injection period, but after injection 25 

ceased, the tilt was more important.  The amplitude of the ridges, which were used to represent the top 26 

morphology, did not have a large effect but, as expected hindered or encouraged migration depending 27 

on whether they were perpendicular or parallel to the tilt. A transition zone can increase the security of 28 

storage by lessening the amount of CO2 accumulating underneath the caprock. Therefore it is important 29 

to characterise the interface in terms of the size of irregularities and also in terms of the existence of 30 

any transition zone. The latter has not been addressed in previous works. A simple formula was derived 31 

to predict the limiting tilt for trapping to occur in models with a sinusoidal interface with wavelength, 32 

, and amplitude, A.  Although this is a simplified approach, it provides a means of assessing whether 33 

the topography of the top surface will give rise to significant trapping or not. 34 

 35 
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 37 

1. Introduction 38 

Carbon Capture and Storage (CCS) is a possible option to mitigate the rise in anthropogenic CO2. 39 

When CO2 is injected into a storage formation, it migrates upwards under buoyancy until it reaches the 40 

caprock.  Some CO2 will dissolve and some will be trapped at the pore scale (residual trapping) and 41 

also some could be trapped in minerals (although not considered here).  However most of the CO2 will 42 

remain as a free phase and, if not trapped under an anticline (dome), will migrate laterally at the top of 43 
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the storage formation.  It is well known from the Sleipner project that CO2 migration does not occur 44 

uniformly in all directions (Jenkins et al. 2015; Zhu et al. 2015; Cavanagh and Haszeldine 2014; 45 

Chadwick and Noy, 2010; Cavanagh 2013), due to irregularities in the top surface of the aquifer (See, 46 

for example, Chadwick et al. 2009).  Bandilla et al. (2014) investigated the effect of model complexity 47 

on CO2 plume modelling at Sleipner using methods ranging from full 3D simulation to a vertical 48 

equilibrium assumption. They suggested that the reason some simulation models cannot predict the 49 

actual plume footprint is due to the inaccuracy in some parameters in the site model such as top 50 

morphology of the caprock. In fact, the identification of the storage complex boundary is one of the 51 

critical issues in the application for a CO2 storage permit (Pearce et al. 2013).  Obviously, adequate site 52 

characterisation is crucial, but also careful modelling and simulation is required to be able to predict 53 

CO2 migration pathways, and estimate the migration limit. 54 

 55 

There are a number of different ways of simulating CO2 migration in an aquifer, depending on the level 56 

of detail required, and the time available for simulation.  Some analytical models have been developed 57 

which allow the effect of a range of parameters to be assessed rapidly (e.g. Nordbotten et al. 2005; 58 

Hesse 2008; MacMinn et al. 2010).  Such calculations usually assume simplified physics (i.e. sharp 59 

interface between CO2 and brine, and no dissolution), and a homogeneous model with an abrupt 60 

boundary between the aquifer and caprock.  At the other extreme, full numerical simulations may be 61 

carried out using conventional reservoir simulation, which takes account of processes such as 62 

dissolution of CO2 in brine, and is often used to study the effect of heterogeneities within an aquifer 63 

(e.g. Williams et al. 2013; Cavanagh and Haszeldine 2014; Bandilla et al. 2014).  A third option is to 64 

combine numerical and analytical calculations.  For example, Gasda et al. (2009) assumes vertical 65 

equilibrium between the CO2 and formation brine.  The equations are solved numerically, but an 66 

analytical model is used within a grid block containing a well.  This method is useful for assessing 67 

sensitivities in a structurally complex formation (i.e. with a varying top surface), such as the Sleipner 68 

model (Gasda et al. 2012).  However, some simplifications are made, such as ignoring dissolution of 69 

CO2 in brine.  Another approach to assessing the effect of irregularities in the aquifer/caprock 70 

interfaces was taken by Nilsen et al. (2012).  They used a semi-analytical spill-point analysis and 71 

vertical equilibrium, and demonstrated that the morphology of the interface has a significant effect on 72 

the storage capacity and the migration of CO2. Goater et al. (2013) studied the effect of top-surface 73 

morphology and heterogeneity on the storage capacity in open aquifers. They concluded that the effect 74 

of top-surface topography on the storage efficiency could be neglected in models with a very low 75 

permeability and a very low aquifer dip angle.  76 

 77 

In the present work, we used conventional simulation (ECLIPSE 300 using the CO2STORE option: 78 

Schlumberger, 2013) to study the top-surface morphology, so that we can include dissolution of CO2 in 79 

brine. In the CO2STORE module, the mutual dissolution is modelled using the method of Spycher and 80 

Pruess (2005). The fugacity of water is calculated using Henry’s Law and the fugacity of CO2 is 81 

calculated using the Redlich-Kwong equation of state. In addition, we have simulated other relevant 82 

effects, such as tilt and kv/kh ratio (ratio of vertical (z) to horizontal (x) permeability).  We also 83 



introduce a transition zone, which is a gradational change from sandstone to mudstone just beneath the 84 

caprock (Shariatipour et al. 2012). One set of models was created to study the impact of 85 

aquifer/caprock morphology, with ridges which were either perpendicular to the tilt (“perp” models) or 86 

parallel to the tilt (“para” models).  The second set was created to study the impact of a transition zone 87 

(referred to as “trans” models). Interbedded shale layers were used in the transition zone. 88 

   89 

 90 

 91 

2. Model Specification 92 

Equation 1 was used to generate top surfaces for the ridges.  A simple model was chosen, so that the 93 

properties could be studied methodically. 94 

)(tan))
2

((0 



x

x
SinAZZ                                                           (1) 95 

where, A  refers to the amplitude of the ridges (m), x  denotes distance from the injection point in the 96 

X (horizontal) direction (m),   refers to the wavelength, which is 1000 m here, and  refers to the tilt 97 

angle. As depicted in Figure 1, the sizes of all the models are 8 km × 8 km × 100 m.  One injector was 98 

placed on the left hand side of model and CO2 was injected through perforations at the bottom of the 99 

aquifer (bottom 50 layers).  The models represented part of a larger aquifer, and the pore volume of the 100 

outer column of cells on the opposite side of where the injector was placed, was multiplied by a factor 101 

of 1E+04, to take account of this.  102 

 103 

         104 
Figure 1 Schematic view of model (vertical exaggeration of 5). The injector was placed at the edge of 105 

model on the left side. 106 

 107 

Table 1 shows all the scenarios (144 models) that were used in this study. Shariatipour et al. (2016) 108 

investigated the effect of different gridding techniques (tilted grid and regular flat Cartesian grid) on 109 

CO2 migration and CO2 dissolution in saline aquifers. They concluded that the results of CO2 storage in 110 

saline aquifers (distance migrated and the amount of dissolution) are sensitive to the model 111 

discretisation. For example using a tilted grid for tilted layers in the storage formation leads to a 112 

100 m



decrease in the distance migrated by the CO2. All the models deployed in this study used a regular flat 113 

Cartesian grid to simulate the vertical and lateral migration. All models have the same dimensions and 114 

the same grid cell sizes (100 m × 100 m × 1 m), and all were assumed to contain a homogeneous 115 

sandstone with porosity of 0.2 and permeability of 500 mD. In the trans models, the shales were 116 

assume to be impermeable. The same relative permeability curves and capillary pressure were used in 117 

all models (Figure 2).  These were measured at Heriot-Watt University on a Sherwood sandstone 118 

sample as part of the CASSEM project (Smith et al, 2011). 119 

 120 

 121 

 122 

 123 

Figure 2 Relative permeability curves (left) and capillary pressure (right) used in this study (Smith et 124 

al. 2011). 125 

The datum depth was set to be 1500 m to keep the tilted models below 800 m, in order to maintain the 126 

injected CO2 in the supercritical phase. The models are all based on the same input data including rock 127 

compressibility, diffusion coefficients, and initial and boundary conditions are chosen in a way that 128 

ensures the different models are comparable (Table 2). 129 

Table 1 Model Specifications, a total of 144 models were generated from all combinations of 3 types of 130 

model, 4 amplitudes, 4 tilts and 3 kv/kh ratios. 131 

  132 

Model type Amplitude (m) Tilt (degrees) kv/kh 

Perpendicular ridges (perp) 0 0 0.01 

Parallel ridges (para) 3 1 0.1 

Transition Zone (trans) 6 2 1 

 9 5  

 133 

Table 2 Model properties. 134 

Property  

Initial mole fraction 
CO2 H2O NaCl 

0.0 0.967 0.033 
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coefficients (m2/day) 0.0001 0.0005 

Initial Pressure / 

Temperature 

Datum Depth (m) Datum Pressure (bar) Temperature (C) 

1500 150 45 

Rock Compressibility 

(1/bar) 
5E-05 

  135 

It should be noted that amplitude in the trans models refers to the half of thickness of the transition 136 

zone.   137 

The CO2 injection rate was chosen to be two thirds of the CO2 emissions of a 500 MW coal-fired 138 

power plant, which is around 2 million tons of CO2 per year (Orr, 2009). The well was controlled by 139 

surface rate with a maximum pressure limit of 220 bars. However, in all models studied here the same 140 

amount of CO2 was injected into the models, as the pressure did not reach the maximum bottom-hole 141 

pressure.  The injector was shut after 6 years and the simulation was continued for 100 years. 142 

The models are described by four parameters: 143 

 type of the model: para, perp or trans 144 

 amplitude (A) 145 

 tilt (D) 146 

 kv/kh ratio (K).  147 

For instance, Model Perp-A9-D5-K001 refers to a simulation with perpendicular ridges, amplitude of 9 148 

m, tilt of 5 degrees and kv/kh ratio of 0.01. 149 

Ideally, the heterogeneity in an aquifer should be represented explicitly, so that its effect on two-phase 150 

flow can be represented, through capillary pressure effects (Saadatpoor et al. 2010). However, 151 

including such complexity in the models tested here would have led to prohibitively long simulation 152 

times.  Instead, heterogeneity within the aquifer formation has been modelled using kv/kh, assuming that 153 

the heterogeneities are in the form of horizontal low permeability features (mudstones). We have 154 

examined 3 ratios of vertical to horizontal permeability (kv/kh), namely 1, 0.1 and 0.01.  These could 155 

represent sandstone with negligible mudstone, one with a mudstone fraction of approximately 0.1 and 156 

one with a mudstone fraction of approximately 0.25, respectively (Ringrose et al. 2005). 157 

 158 

3. Comparison of numerical and analytical models 159 

Prior to investigating the effects of tilt, rugosity and kv/kh on CO2 migration, a preliminary test on the 160 

numerical simulation was carried out, by comparing results with an analytical calculation.  Nordbotten 161 

et al. (2005) presented an equation for the extent of plume migration in flat models (tilt equals zero) 162 

and kv/kh = 1, as follows:  163 





B

Qt
d

w

c                   (2) 164 

where, d refers to the length of plume, c denotes for CO2 mobility, w denotes for water mobility, 165 

refers to porosity, B denotes to the reservoir thickness, Q
 
refers to the flow rate, and t refers to time.  166 

 167 

Taking account of the residual brine saturation, Equation (2) may be written as:  168 



)1( rSB

Qt
d







                 (3) 169 

(Okwen et al. 2010), where  denotes the ratio of motilities of two fluids (

w

c




), and Sr is the residual 170 

brine saturation. The length of the plume was calculated based on the above equation for the Perp-A0-171 

D0-K1 Model, for which the amplitude and tilt are zero and kv/kh ratio equals 1. Table 3 shows the 172 

properties of the model that were used to calculate the length of plume (d), which equals 1207 m. This 173 

validates numerical results for this case, where d = 1200 m. 174 

 175 

Table 3 Values used to calculate length of plume in Perp-A0-D0-K1 Model 176 

  
Q   

(
3

/m day ) 
t (day) 

rS    B (m) 
Length from 

Okwen (m) 

Length from 

simulation (m) 

4 6638 2190 0.364 0.2 

 

100 

 

1207 1200 

 177 

 178 

4. Plume Migration 179 

In this section the results of the effect of tilt, kv/kh ratio and amplitude on the plume migration are 180 

presented. Later, the results of the effect of these parameters on the amount of CO2 dissolution will be 181 

discussed.  182 

4.1 Models with no Ridges or Transition Zones 183 

First, we consider models with no sinusoidal ridges (amplitude = 0) and no transition zone.  Figure 3 184 

shows cross-sections of the gas saturation in three models –A0-D0-K001, A0-D2-K01 and A0-D5-K1 185 

– at the end of the simulation (100 years post injection).  In A0-D0-K001, because the CO2 rises 186 

slowly, the gas saturation remains high in the location of the well. Also, the plume does not migrate far 187 

along the underside of the caprock.  On the other hand, by the end of the simulation in A0-D5-K1, all 188 

the mobile CO2 has risen to the top of the aquifer (i.e. just under the caprock) and only residual 189 

saturation remains.  Therefore there is more CO2 available to migrate along the underside of the 190 

caprock, aided by the high tilt.  In this case, the mobile CO2 migrates away from the injection location 191 

as a narrow plume of maximum thickness 10 m.  Note that in our simulations we do not observe a 192 

shock in the trailing edge of the plume as predicted by Hesse et al. (2008) and MacMinn et al. (2010), 193 

who both derived analytical formulae to describe plume migration using a sharp interface, vertical 194 

equilibrium approximation.  Further investigations of our simulations showed that, if the well is placed 195 

away from the left edge (down-dip side) of the model, the CO2 moves both down-dip and up-dip under 196 

the cap rock, due to a rise in potential (P – gh) above the injection site.  In the models shown here 197 

where the injector location is at the down-dip edge of the model, the highest potential was at a location 198 

slightly up-dip from the injection location (due to CO2 rising vertically), so there was still a tendency 199 

for CO2 to move down-dip, and thus spread out the trailing edge of the plume.  The CO2 distribution in 200 

model A0-D2-K01 was intermediate between the two extreme models shown in Figure 3. 201 



 202 

 203 
 204 

Figure 3 Cross-section of the gas saturation in three models with no sinusoidal variations on the top 205 

surfaces at 100 years post injection: a) A0-D0-K001, b) A0-D2-K01 and c) A0-D5-K1.   206 

 207 

 208 

4.2 Sensitivity Study on the Effect of Tilt on the Plume Migration 209 

In order to investigate the relation between the tilt and the plume migration (where CO2 saturation is 210 

more than 10%), some additional tilted models with 3 and 4 degree tilts were constructed. Results show 211 

that the length of the plume, which is the distance where CO2 migrates parallel to the tilt 100 years post 212 

injection, increases with tilt linearly from 0 to 4 degrees. However, after 4 degrees it increases more 213 

rapidly due to the decrease in CO2 density (compared with the brine density) as it rises (Figure 4). 214 

 215 

 216 

(c)

0.00

0.35

0.70

CO2 Saturation

(a) (b)



 217 

Figure 4: The length of plume at 100 years post-injection with time.  The models had zero amplitude, 218 

and kv/kh = 1. 219 

 220 

4.3 Plume Migration in Para and Perp Models 221 

Figure 5 illustrates examples of plume migration in the models where the sinusoidal ridges are parallel 222 

to the tilt. As expected the ridges encourage migration up-dip. Two examples of CO2 migration in 223 

models where the ridges are perpendicular to the dip are given in Figure 6. The perpendicular ridges 224 

hamper the migration up-dip, and lead to a broader plume. In Figure 6, the effect of kv/kh can also be 225 

seen: as in the cases with no sinusoidal ridges, less CO2 reaches the top of the storage formation, and 226 

there is less plume migration. 227 

 228 

 229 

Figure 5 Gas saturation 100 years after the end of injection in two para models with tilt = 2o and kv/kh  230 

= 1. Left: amplitude = 3 m and right: amplitude = 9 m. 231 

 232 



 233 

Figure 6 Gas saturation 100 years after the end of injection in two perp models with amplitude = 6 m,  234 

tilt = 5o.  Left: kv/kh = 0.01 and right: kv/kh = 1. 235 

 236 

A full set of results is presented in Figures 7 and 8, in the form of 3D diagrams (7a and 8a) showing the 237 

combination of all the effects: kv/kh, tilt and amplitude, at the end of injection and at 100 post injection, 238 

respectively.  In these figures, the top box of each pair is for the para model and the lower one is for 239 

the perp models.  As can be seen in Figure 7, the length of the plume at the end of injection depends 240 

very much on the kv/kh ratio.  When kv/kh = 0.01, the plume rises slowly and has not reached the top of 241 

the aquifer by the end of injection.  Therefore the amplitude and tilt have negligible effect.  As kv/kh 242 

increases, the plume rises to the top of the aquifer faster and spreads out in the up-dip direction.  In the 243 

kv/kh = 1 models, the higher the tilt the further the spread.  However, note that in all these cases, the 244 

amplitude does not have a large effect because the plume has not yet had time to spread far from the 245 

injection location – the maximum distance migrated is 1400m, which is less than 1.5 times the 246 

wavelength of the sinusoidal variation.  In the para models, though, there is a slight increase in the 247 

distance migrated at larger amplitudes due to the CO2 being channelled along ridges. 248 



 249 
Figure 7 Length of the plume as a function of amplitude, tilt and kv/kh at the end of injection (a).  The 250 

top box of each pair is from the para simulations, and the bottom box from the perp simulations. The 251 

length of the plume vs kv/kh ratio at the end of injection period in the perp models (b) and para models 252 

(c). 253 

 254 

Figure 8 shows the length of the plume measured under the caprock, at the end of the simulations (100 255 

years post-injection). The dominant effect is the tilt which increases the length of the plume in both the 256 

para and perp models. The kv/kh ratio has the second most significant effect.  This is especially 257 

noticeable in the case with tilt = 5o.  As mentioned above, in cases with low kv/kh (0.01), the CO2 takes 258 

a long time to rise to the top of the aquifer, and therefore there is less CO2 available to migrate outward 259 

away from the injection point.  The amplitude does not have a significant effect when considering the 260 

para and perp models separately.  However, there is noticeable difference in the length of the plume 261 

between the models: the migration is greater in the para models, as expected. In the perp models, one 262 

might expect the amplitude to have a significant effect in trapping the CO2, since Figure 3 shows that, 263 

in the models with A = 0, the plume becomes thinner and spreads further as the tilt increases. However, 264 

as the tilt increases, the volume which can be trapped under a crest decreases, allowing the CO2 to 265 

migrate further.  (See discussion below.)  266 
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 267 
Figure 8 Length of the plume as a function of amplitude, tilt and kv/kh at 100 years post injection (a). 268 

The top box of each pair is from the para simulations, and the bottom box from the perp simulations.  269 

Note that the colour scale is different from that in Figure 7. The length of the plume vs tilt in the para 270 

models (b) and perp models (c). 271 

 272 

4.4 Migration in the trans models 273 

In the trans models, the presence of the discontinuous shale (or mudstone) layers hampered the rise of 274 

the CO2 in the transition zone, and the resulting CO2 distribution at the top of the aquifer was patchy.  275 

The distribution of CO2 obviously depends on the realisation of the stochastic shales. Only, one 276 

realisation of each model for amplitudes of 3, 6 and 9 m (thickness of transition zone = 6, 12 and 18 m) 277 

was generated.  Some qualitative conclusions may be drawn from these simulations.  The analysis of 278 

these results focused on the migration of CO2 at the end of the simulation (100 years post injection).  279 

Figure 9 demonstrates the effect of kv/kh, tilt and amplitude on the length of plume measured under the 280 

caprock in trans models at 100 years post injection. Figure 10 shows an example of the gas saturation 281 

in 3 trans models. As with the para and perp models, the tilt has the main effect at 100 years post 282 

injection: as tilt increases, the maximum distance migrated at the top of the aquifer increases. The 283 

maximum distance migrated under the caprock in the trans models, is less than in the para models, but 284 

comparable to the perp models. When the angle of tilt is zero, the CO2 may reach the top of the aquifer 285 
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in any direction from the well (case not shown).  As the angle of tilt increases, the CO2 is more likely to 286 

reach the top of the aquifer in the up-dip direction. The kv/kh ratio had some effect – as kv/kh increased, 287 

the maximum distance migrated increased. The effect of amplitude (thickness of transition zone) on the 288 

plume migration at the very top of the models is as expected: the furthest plume migration is observed 289 

in the models with amplitude zero (no shale layers) compared to other models. This is due to the fact 290 

that there was no interbeded shale layer to hamper the CO2 migration vertically. The volume of CO2 291 

reaching the top of the aquifer decreased in models with amplitudes 3, 6 and 9 m. However, there 292 

wasn’t any particular trend between plume migration in models with amplitudes of 3, 6 and 9 m. This 293 

demonstrates the unpredictability of the migration of CO2 in aquifers where there is a transition zone. 294 

 295 

 296 

Figure 9 Length of the plume as a function of tilt (a), kv/kh ratio (b) and amplitude (c) in trans models at 297 

100 years post injection.  298 

 299 
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 300 

Figure 10 The CO2 distribution at the top of the aquifer in 3 trans models –A6-D5-K1, A6-D1-K1 and 301 

A6-D1-K001, at 100 years after the end of injection. 302 

 303 

5. Dissolution 304 

It is of interest to examine the amount of dissolution which arises in the different models.  Figure 11 305 

shows the amount of dissolution at the end of injection.  This figure includes results for the para, perp 306 

and trans models.  The results show that dissolution is completely dominated by the kv/kh ratio.  The 307 

lower kv/kh, the further the plume spreads out laterally, and therefore contacts more brine.  Figure 12 308 

illustrates the amount of dissolution at the end of the 100-year post-injection period (Note again the 309 

difference in colour scales between the figures at the end of injection and the end of the simulation.).  310 

This time (as with the migration distance), the tilt has the most significant effect in all of the models – 311 

para, perp and trans.  At this stage, the amount of tilt aids migration of the CO2, and so increases the 312 

amount of contact of CO2 with fresh brine.  In the high tilt models, with kv/kh   0.1, the amount of 313 

dissolution tends to be greatest in the trans models and least in the perp models.  In the trans models, 314 

this is due to the plume being dispersed by the shales near the top of the aquifer, so the CO2 comes into 315 

contact with more brine.  On the other hand, in the perp models, there is CO2 trapping in the crests, so 316 

the CO2 contacts less brine. 317 



 318 
Figure 11 Dissolved CO2 at the end of injection for the trans, para and perp models (a, b, c and d). The 319 

top box at each point refers to the trans models, the middle one refers to the para models and the 320 

bottom one refers to the perp models (a). The amount of dissolved CO2 in percentage at the end of 321 

injection vs kv/kh ratio in the perp models (b), para models (c) and trans models (d). 322 
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 325 
Figure 12 Dissolved CO2 100 years post injection period for trans, para and perp models (a, b, c and 326 

d). The top box at each point refers to the trans models, the middle one refers to the para models and 327 

the bottom one refers to the perp models (a). The amount of dissolved CO2 as a percentage 100 years 328 

post injection vs tilt in the perp models (b), para models (c) and trans models (d). 329 

 330 

6. Analytical Calculations of trapping 331 

In this section an equation for the relationship between tilt )( , amplitude )(A , and wavelength )( is 332 

presented that can be deployed to find out under what conditions the morphology of top surface could 333 

make a significant difference, and what will never have an effect. In the perp models, the effects of 334 

small scale amplitudes on the plume migration and CO2 dissolution are diminished when the tilt 335 

increases. This is due to the fact that less CO2 will trap locally under ridges. For instance in sine-wave 336 

models, the amount of CO2 that can be trapped under each wavelength is decreased by approximately 337 

2/3 as the tilt is increased from 0 to 1 (see the calculations in Appendix A). The area under a non-tilted 338 

sine-wave model is equal to A  . It can be concluded that as long as tan( ) (2 / )A    a 339 

percentage of CO2 will be trapped under ridges. Therefore, this could be a simple important 340 

measurement tool to identify whether the topography of top surface has an important role in CO2 341 

trapping or not. 342 

Figure 13 shows the effect of increasing the tilt in models with different amplitudes, and Table 4 343 

indicates which models of those studied (A = 3 m – 9 m and D = 0o – 5o) will give rise to trapping and 344 

which will not. 345 
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Results show that for models with tilt of more than 1 degree, and amplitude less than 3 metres, 346 

morphology cannot make a significant effect on the CO2 trapping. 347 

 348 

Figure 13 Relationship between tilt and amplitude when the wavelength equals 1000 metres over a 349 

distance of 2. By increasing the tilt, the top morphology gets closer to a tilted flat surface where no 350 

CO2 will be trapped. 351 

 352 

Table 4 Relationship between tilt )( and amplitude (A) and trapping (T = trapping and NT = no 353 

trapping). 354 
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 356 

7. Concluding Remarks 357 

In this study, we investigated CO2 plume migration in a range of aquifer models.  The focus was 358 

mainly on the interface between the aquifer and the caprock, and we tested the effect of rugosity and 359 

tilt at the interface, and the presence of a transition zone between the aquifer and caprock, in the form 360 

of stochastically distributed shales.  We also explored the influence of the kv/kh ratio in the aquifer. 361 
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Results showed that the most influential factor during injection was the kv/kh ratio, which determines 363 

the length of time which the CO2 takes to reach the top of the aquifer.  Aquifer heterogeneity is 364 

important, and when present should be included in estimations of CO2 migration.  Not only does the 365 

effective vertical permeability have a significant effect during injection, but it also influences the 366 

distance migrated at later times. 367 

 368 

In the post-injection period, the tilt was most influential.  The amplitude of the sinusoidal variation had 369 

some effect.  In the para models, it increased the migration distance, while in the perp models, it 370 

hindered migration.  However, trapping was limited in the tilted models, and we derived a simple 371 

equation to estimate the maximum tilt for trapping as a function of amplitude and wavelength of the 372 

sinusoidal fluctuation at the interface.  373 

 374 

The possibility of a transition zone between the aquifer and caprock has been largely overlooked in 375 

previous studies, although this has been observed in outcrop (Shariatipour et al. 2012, 2014; Newell 376 

and Shariatipour 2016). The presence of a transition zone is beneficial, as CO2 may be trapped under 377 

shales near the top of the aquifer, limiting the amount of CO2 reaching the caprock.  In addition, the 378 

amount of dissolution is enhanced in trans models, due to the shales dispersing the CO2 plume which 379 

therefore contacts more brine. At the Sleipner storage cite, the CO2 plume migration beneath the 380 

caprock (top seal) has been studied extensively and CO2 plume behaviour calibrated against monitoring 381 

data using numerical simulation results and seismic data (Cavanagh 2013; Cavanagh and Haszeldine 382 

2014; Chadwick et al., 2004, 2006; Chadwick and Noy, 2010; Singh et al., 2010; Nilsen et al., 2011; 383 

Bandilla et al., 2014). Currently, none of the conventional simulations methods (full physics, or vertical 384 

equilibrium) is capable of reproducing the observed plume (Cavanagh 2013; Bandilla et al., 2014). Our 385 

results show that small-scale features just beneath the caprock (surface rugosity, heterogeneity and kv/kh 386 

ratio), which will not be identified by seismic data, could have an effect on plume migration at the top 387 

of the storage formation. Thus, considering such effects in a real case scenario such as Sleipner could 388 

help further in the prediction of CO2 plume behaviour beneath the caprock.  389 

 390 

In general, the results of this work demonstrate that reservoir characterisation of potential CO2 storage 391 

sites is very important, in order to assess CO2 migration and to predict the location of boundaries for 392 

the storage complex. This includes assessment of heterogeneities within the aquifer itself, and the 393 

nature of the aquifer/caprock interface. 394 

 395 
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Appendix A 525 

Simple Analytical Calculations of trapping 526 

 527 

Using Equation (1) and tilt 0 , the area under a non-tilted sine wave model (A1 in Figure A.1) can 528 

be calculated. 529 

)(tan))
2

((0 



x

x
SinAZZ    530 

where  is wavelength.       531 

Substituting 0 , 532 

))
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

x
SinAZZ                     (A.1) 533 

Assuming 00 Z , and integrating over one wavelength: 534 

2
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x
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
    535 

As shown in Figure A.1, at a certain tilt, the amount of trapping will be approximately equal to the area 536 

under the top half of a sine wave, i.e. the integral under the sine wave between angles of 0 and .  The 537 

resulting area is equal to A  , which is approximately equal to 3A .  This occurs when the 538 

average height of the sine wave increases by approximately one amplitude over a distance of 2/ .  In 539 

other words  1tan 9 / 500 1o   . 540 

541 
Figure A.1 Decrease in local structural trapping due to increase in tilt angle.  A1 shows the area under a 542 
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wavelength in a flat perp model with amplitude of 9 metres and A2 shows the area under a wavelength 543 

in a 1 degree tilted perp model, also with amplitude of 9 metres. 544 

The tilt at which the amount of trapping falls to zero can be calculated as follows: 545 

Differentiating Equation (1),  546 
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For trapping, this must be always negative for some value of x. But, for no trapping, this must always 548 

be non-negative )0/( dxdz .  The minimum of a cosine is -1, so the minimum gradient is 549 
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Thus; 
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If the minimum gradient is zero, then  553 
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Therefore is given by: 555 
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