80 research outputs found

    Opioids depress cortical centers responsible for the volitional control of respiration

    Get PDF
    Respiratory depression limits provision of safe opioid analgesia and is the main cause of death in drug addicts. Although opioids are known to inhibit brainstem respiratory activity, their effects on cortical areas that mediate respiration are less well understood. Here, functional magnetic resonance imaging was used to examine how brainstem and cortical activity related to a short breath hold is modulated by the opioid remifentanil. We hypothesized that remifentanil would differentially depress brain areas that mediate sensory-affective components of respiration over those that mediate volitional motor control. Quantitative measures of cerebral blood flow were used to control for hypercapnia-induced changes in blood oxygen level-dependent (BOLD) signal. Awareness of respiration, reflected by an urge-to-breathe score, was profoundly reduced with remifentanil. Urge to breathe was associated with activity in the bilateral insula, frontal operculum, and secondary somatosensory cortex. Localized remifentanil-induced decreases in breath hold-related activity were observed in the left anterior insula and operculum. We also observed remifentanil-induced decreases in the BOLD response to breath holding in the left dorsolateral prefrontal cortex, anterior cingulate, the cerebellum, and periaqueductal gray, brain areas that mediate task performance. Activity in areas mediating motor control (putamen, motor cortex) and sensory-motor integration (supramarginal gyrus) were unaffected by remifentanil. Breath hold-related activity was observed in the medulla. These findings highlight the importance of higher cortical centers in providing contextual awareness of respiration that leads to appropriate modulation of respiratory control. Opioids have profound effects on the cortical centers that control breathing, which potentiates their actions in the brainstem

    Attention-Related Brain Activation Is Altered in Older Adults With White Matter Hyperintensities Using Multi-Echo fMRI

    Get PDF
    Cognitive decline is often undetectable in the early stages of accelerated vascular aging. Attentional processes are particularly affected in older adults with white matter hyperintensities (WMH), although specific neurovascular mechanisms have not been elucidated. We aimed to identify differences in attention-related neurofunctional activation and behavior between adults with and without WMH. Older adults with moderate to severe WMH (n = 18, mean age = 70 years), age-matched adults (n = 28, mean age = 72), and healthy younger adults (n = 19, mean age = 25) performed a modified flanker task during multi-echo blood oxygenation level dependent functional magnetic resonance imaging. Task-related activation was assessed using a weighted-echo approach. Healthy older adults had more widespread response and higher amplitude of activation compared to WMH adults in fronto-temporal and parietal cortices. Activation associated with processing speed was absent in the WMH group, suggesting attention-related activation deficits that may be a consequence of cerebral small vessel disease. WMH adults had greater executive contrast activation in the precuneous and posterior cingulate gyrus compared to HYA, despite no performance benefits, reinforcing the network dysfunction theory in WMH

    State, trait, and accumulated features of the Alzheimer's Disease Assessment Scale Cognitive Subscale (ADAS-Cog) in mild Alzheimer's disease

    Get PDF
    Background The Alzheimer's Disease Assessment Scale Cognitive Subscale (ADAS-Cog) is used to assess decline in memory, language, and praxis in Alzheimer's disease (AD). Methods A latent state–trait model with autoregressive effects was used to determine how much of the ADAS-Cog item measurement was reliable, and of that, how much of the information was occasion specific (state) versus consistent (trait or accumulated from one visit to the next). Results Participants with mild AD (n = 341) were assessed four times over 24 months. Praxis items were generally unreliable as were some memory items. Language items were generally the most reliable, and this increased over time. Only two ADAS-Cog items showed reliability >0.70 at all four assessments, word recall (memory) and naming (language). Of the reliable information, language items exhibited greater consistency (63.4% to 88.2%) than occasion specificity, and of the consistent information, language items tended to reflect effects of AD progression that accumulated from one visit to the next (35.5% to 45.3%). In contrast, reliable information from praxis items tended to come from trait information. The reliable information in the memory items reflected more consistent than occasion-specific information, but they varied between items in the relative amounts of trait versus accumulated effects. Conclusions Although the ADAS-Cog was designed to track cognitive decline, most items were unreliable, and each item captured different amounts of information related to occasion-specific, trait, and accumulated effects of AD over time. These latent properties complicate the interpretation of trends seen in ordinary statistical analyses of trials and other clinical studies with repeated ADAS-Cog item measures

    Exercise Training Increases Parietal Lobe Cerebral Blood Flow in Chronic Stroke: An Observational Study

    Get PDF
    Exercise is increasingly recommended as an essential component of stroke rehabilitation, yet uncertainty remains with respect to its direct effect on the cerebral vasculature. The current study first demonstrated the repeatability of pseudo-continuous arterial spin labeling (ASL) magnetic resonance imaging (MRI) in older adults with stroke, and then investigated the change in cerebrovascular function following a 6-month cardiovascular rehabilitation program. In the repeatability study, 12 participants at least 3 months post-stroke underwent two ASL imaging scans 1 month apart. In the prospective observational study, eight individuals underwent ASL imaging and aerobic fitness testing before and after a 6-month cardiovascular rehabilitation program. Cerebral blood flow (CBF) and the spatial coefficient of variation of CBF (sCoV) were quantified to characterize tissue-level perfusion and large cerebral artery transit time properties, respectively. In repeat scanning, intraclass correlation (ICC) indicated moderate test-retest reliability for global gray matter CBF (ICC = 0.73) and excellent reliability for sCoV (ICC = 0.94). In the observational study, gray matter CBF increased after training (baseline: 40 ± 13 vs. 6-month: 46 ± 12 ml·100 g−1·min−1, P = 0.036). The greatest change occurred in the parietal lobe (+18 ± 12%). Gray matter sCoV, however, did not change following training (P = 0.31). This study provides preliminary evidence that exercise-based rehabilitation in chronic stroke enhances tissue-level perfusion, without changing the relative hemodynamic properties of the large cerebral arteries

    BASIL: A Toolbox for Perfusion Quantification using Arterial Spin Labelling

    Get PDF
    Arterial Spin Labelling (ASL) MRI is now an established non-invasive method to quantify cerebral blood flow and is increasingly being used in a variety of neuroimaging applications. With standard ASL acquisition protocols widely available, there is a growing interest in advanced options that offer added quantitative precision and information about haemodynamics beyond perfusion. In this article we introduce the BASIL toolbox, a research tool for the analysis of ASL data included within the FMRIB Software Library (FSL) and explain its operation in a variety of typical use cases. BASIL is not offered as a clinical tool, and nor is this work intended to guide the clinical application of ASL. Built around a Bayesian model-based inference algorithm, the toolbox is designed to quantify perfusion and other haemodynamic measures, such as arterial transit times, from a variety of possible ASL input data, particularly exploiting the information available in more advanced multi-delay acquisitions. At its simplest, the BASIL toolbox offers a graphical user interface that provides the analysis options needed by most users; through command line tools, it offers more bespoke options for users needing customised analyses. As part of FSL, the toolbox exploits a range of complementary neuroimaging analysis tools so that ASL data can be easily integrated into neuroimaging studies and used alongside other modalities

    Effects of post-acute COVID-19 syndrome on the functional brain networks of non-hospitalized individuals

    Get PDF
    IntroductionThe long-term impact of COVID-19 on brain function remains poorly understood, despite growing concern surrounding post-acute COVID-19 syndrome (PACS). The goal of this cross-sectional, observational study was to determine whether there are significant alterations in resting brain function among non-hospitalized individuals with PACS, compared to symptomatic individuals with non-COVID infection.MethodsData were collected for 51 individuals who tested positive for COVID-19 (mean age 41±12 yrs., 34 female) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19 (mean age 41±14 yrs., 9 female), with both groups assessed an average of 4-5 months after COVID testing. None of the participants had prior neurologic, psychiatric, or cardiovascular illness. Resting brain function was assessed via functional magnetic resonance imaging (fMRI), and self-reported symptoms were recorded.ResultsIndividuals with COVID-19 had lower temporal and subcortical functional connectivity relative to controls. A greater number of ongoing post-COVID symptoms was also associated with altered functional connectivity between temporal, parietal, occipital and subcortical regions.DiscussionThese results provide preliminary evidence that patterns of functional connectivity distinguish PACS from non-COVID infection and correlate with the severity of clinical outcome, providing novel insights into this highly prevalent disorder

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    APOE-ε4 associates with hippocampal volume, learning, and memory across the spectrum of Alzheimer's disease and dementia with Lewy bodies

    Get PDF
    Introduction Although the apolipoprotein E ε4-allele (APOE-ε4) is a susceptibility factor for Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), its relationship with imaging and cognitive measures across the AD/DLB spectrum remains unexplored. Methods We studied 298 patients (AD = 250, DLB = 48; 38 autopsy confirmed; NCT01800214) using neuropsychological testing, volumetric magnetic resonance imaging, and APOE genotyping to investigate the association of APOE-ε4 with hippocampal volume and learning/memory phenotypes, irrespective of diagnosis. Results Across the AD/DLB spectrum: (1) hippocampal volumes were smaller with increasing APOE-ε4 dosage (no genotype × diagnosis interaction observed), (2) learning performance as assessed by total recall scores was associated with hippocampal volumes only among APOE-ε4 carriers, and (3) APOE-ε4 carriers performed worse on long-delay free word recall. Discussion These findings provide evidence that APOE-ε4 is linked to hippocampal atrophy and learning/memory phenotypes across the AD/DLB spectrum, which could be useful as biomarkers of disease progression in therapeutic trials of mixed disease

    Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling:Acquisition, quantification, and clinical applications

    Get PDF
    Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.</p
    corecore