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Abstract 

Arterial Spin Labelling (ASL) MRI is now an established non-invasive method to quantify 

cerebral blood flow and is increasingly being used in a variety of neuroimaging applications. 

With standard ASL acquisition protocols widely available, there is a growing interest in 

advanced options that offer added quantitative precision and information about 

haemodynamics beyond perfusion. In this article we introduce the BASIL toolbox, a research 

tool for the analysis of ASL data included within the FMRIB Software Library (FSL) and 

explain its operation in a variety of typical use cases. BASIL is not offered as a clinical tool, 

and nor is this work intended to guide the clinical application of ASL. Built around a Bayesian 

model-based inference algorithm, the toolbox is designed to quantify perfusion and other 

haemodynamic measures, such as arterial transit times, from a variety of possible ASL input 

data, particularly exploiting the information available in more advanced multi-delay 

acquisitions. At its simplest, the BASIL toolbox offers a graphical user interface that provides 

the analysis options needed by most users; through command line tools, it offers more 

bespoke options for users needing customised analyses. As part of FSL, the toolbox exploits 

a range of complementary neuroimaging analysis tools so that ASL data can be easily 

integrated into neuroimaging studies and used alongside other modalities.  
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1. Introduction 

Arterial Spin Labelling MRI is now an established and increasingly widely used method for 

non-invasively imaging cerebral perfusion1. BASIL is a toolbox for the quantification of 

perfusion and other haemodynamic parameters from Arterial Spin Labelling (ASL) MRI data. 

Its speciality is robust precision quantification using Bayesian inference methods, and it is 

equally well-suited to both standard single-delay acquisitions as recommended by the 

consensus paper (Alsop et al., 2015), or advanced multi-delay acquisitions that better 

sample the kinetics of the ASL tracer (Woods et al., 2023). Critically, BASIL approaches the 

analysis of all ASL data using the same model and algorithm, allowing for consistency and 

correspondence to be achieved between studies irrespective of the acquisition scheme 

employed. Since the analysis can be applied to every common form of ASL, it is possible to 

process data acquired from any MRI vendor’s platform, and to this end BASIL has been used 

with all the major product sequences and many widely used research sequences. 

An example of BASIL’s output operating on single and multi-delay pseudo-continuous ASL 

data is shown in Figure 1, showing both perfusion and (for the multi-delay case) arterial 

transit time (ATT) estimates. Also shown are the estimated uncertainty on the perfusion 

values, given as a standard deviation. 

                                                      
1
 A pubmed search with ‘Arterial Spin Labeling MRI’ returns over 300 publications per year since 2015. 
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Figure 1: Example quantified perfusion images from single-delay (top row) and multi- delay (bottom row) ASL in a single 
subject. Also shown are the estimated uncertainty in the perfusion parameter, given as the estimated standard deviation 
on the perfusion value in the voxel, and the corresponding ATT estimates for the multi delay data. The single-delay data 
has been fitted in “white paper” mode, following the assumptions of the ASL consensus paper. Due in particular to the 
assumption that ATT = 0 s, the resultant perfusion estimates are higher than in the multi-delay case. In the multi-delay 
case, fitting an extra parameter (ATT) increases the uncertainty in perfusion estimates for some voxels, leading to a 
more variable standard deviation map for this parameter.  

The BASIL toolbox is distributed as part of the FMRIB Software library (Jenkinson et al., 

2011; Woolrich et al., 2009)(FSL, www.fmrib.ox.ac.uk/fsl), a version having first been 

offered in FSL v5.0.1 in 2012, this paper refers to the latest version in FSL v6 (6.0.62). The 

toolbox is provided under the same licence terms as FSL itself (free for academic use, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Licence) and the code is open source (available at 

https://github.com/physimals). A review of the literature in 2023 indicates that it has been 

used in over 100 published studies3. Components of BASIL are also available as plug-ins for 

                                                      
2
 It is possible to update BASIL within a prior release of FSL v6 to the specific version described here without 

updating the whole FSL package. 
3
 Literature search carried out in May 2023 based on citations for (Chappell et al., 2009), limiting only to 

papers including the term Arterial Spin Labelling, excluding self-citations and publications that report new ASL 
techniques or methods comparisons. 
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other neuroimaging and physiological imaging software tools including ExploreASL 

(Mutsaerts et al., 2020) (an SPM compatible ASL analysis tool, www.exploreasl.org) and 

Quantiphyse (a python-based graphical user interface for the analysis of physiological 

imaging data designed for non-expert users; www.quantiphyse.org). The Open Science 

Initiative for Perfusion Imaging has created an ASL Pipeline Inventory which compares the 

features and requirements of currently available ASL tools, including the BASIL toolbox4. 

The BASIL toolbox includes a graphical user interface (GUI, asl_gui) that presents the main 

functionality that many users would require to analyse individual subject ASL data, as well 

as integration with other FSL tools to prepare data for group analysis. The toolbox is 

supported by online documentation and hands-on tutorial guides at https://asl-

docs.readthedocs.io/en/latest/. The GUI, shown in Figure 2, directly interacts with the 

oxford_asl command line tool, the main command line interface to the toolbox. This link 

between GUI and command line allows analysis to be set up first in the GUI, but the 

associated command line call reused and adapted to create a batch script for processing 

large datasets. The design of the GUI follows the principle that 20% of capabilities will be 

sufficient for 80% of users; more advanced control is offered either via the oxford_asl 

command line tool or through the use of individual component tools for complete control 

over all analysis steps (as detailed in section 4). Notably, the basil command line tool 

itself is the interface to the kinetic model inference algorithm, which includes a range of 

kinetic models.  

                                                      
4
 https://docs.google.com/document/d/e/2PACX-1vQ-1GF2fmz6Q4IukuKP_-57H-

xi872Xq_uBlX5P0Cwpj4RYd_t73pvZ64UqXegPaVpQJhQQrVRJRPro/pub 
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Figure 2: BASIL toolbox GUI (asl_gui) showing ‘Input data’ tab loaded with single-delay PCASL after a preview of the 
label-control subtraction has been requested. 

The aim of this paper is to describe the technology and functionality of the BASIL toolbox, 

documenting important details of the implementation in order to provide a high degree of 

transparency for its use. This work assumes background knowledge of ASL and those who 

are new to the modality are referred to resources such as (Chappell et al., 2017) or 

https://asl-docs.readthedocs.io/en/latest/ for an introduction to both acquisition and 

analysis. Neither does this work attempt to guide users on how to choose between the 

various analysis strategies that are possible using the toolbox, particularly in the context of 

clinical applications. Such discussion can be found elsewhere (including but not limited to 

Alsop et al., 2015; Chappell et al., 2017; Jezzard et al., 2017; Pinto et al., 2020; Zhao et al., 

2017). 

2. Overview of ASL analysis 

Generating a perfusion-weighted image from ASL data is trivial, involving the subtraction of 

label and control images. Typically, multiple images will have been acquired to improve 

signal to noise ratio and an average is generally taken over all subtraction pairs. Two further 

steps are then required for quantification: 1) kinetic model fitting, to account for the 
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relationship between signal intensity and delivery of labelled blood water via perfusion; 2) 

calibration, to relate signal intensity to absolute perfusion, scaling for the apparent 

concentration of the tracer via the equilibrium magnetization of arterial water.  

The ASL consensus paper (Alsop et al., 2015) combines these steps into a single process, 

given in terms of an equation that converts from raw image intensities to absolute perfusion 

using a proton density weighted M0 image. For more advanced quantification, kinetic model 

fitting is achieved fitting a non-linear kinetic model (Buxton et al., 1998) to the data, which 

allows for correction of confounding haemodynamic effects and/or estimation of other 

haemodynamic information, such as arterial transit time (ATT), and arterial blood volume 

(aBV) in larger arteries (the 'macrovasculature') (Chappell et al., 2010; Petersen et al., 2006). 

Various strategies for calibration can be employed, reflecting both the type of M0 images 

available, and whether a reference region is used to estimate the magnetization of arterial 

blood or if this is done on a voxelwise basis (Pinto et al., 2020). 

As with other functional imaging modalities, correction for motion and distortion is possible 

for ASL perfusion images. Additionally, registration to a template space, e.g., MNI152 

'standard' space (Grabner et al., 2006), is often desirable as part of a study. All of these 

processes follow techniques used in other neuroimaging modalities, the closest being BOLD 

fMRI, but with particular challenges associated with the characteristics of ASL data. 

3. The BASIL ASL analysis pipeline 

The BASIL toolbox offers a complete analysis pipeline for ASL data that aims to cover the 

majority of use cases and will be discussed in the following section. The pipeline is accessed 

either via the toolbox GUI asl_gui or the command line tool oxford_asl, and in either 

case the underlying processing is the same (namely, using the individual components of the 

toolbox listed in section 4). Figure 3 shows a schematic diagram of the operations 

performed to process ASL data to obtain perfusion and ATT maps. If required, a user may 

perform the operations in a different order or with different settings by using the individual 

components of the toolbox listed in section 4. Consistent with the wider FSL toolbox, BASIL 

has been developed for research use and it has not been validated for clinical applications.  
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Figure 3: A graphical representation of the processing steps required to produce a perfusion image (scaled into absolute 
units) along with ATT. The numbers 3.1, 3.2 etc refer to section headings in the manuscript text. Optional steps such as 
motion/distortion correction and partial volume correction have been included. * denotes an output for which multi-delay 
data is required 

3.1. ASL data input 

The tools in the BASIL toolbox all accept data in NIFTI format (consistent with the wider FSL 

tools). Users are recommended to convert data from DICOM to NIFTI using the widely-used 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00041/2181214/imag_a_00041.pdf by guest on 23 November 2023



 9 

dcm2niix tool5 which has compatibility with a range of ASL implementations. In the future, 

the emergence of tools that meet the recently-adopted ASL-BIDS standard will facilitate 

easier conversion of DICOM to NIFTI data whilst preserving acquisition parameters from the 

DICOM header (Clement et al., 2022), though currently BASIL does not interface with ASL-

BIDS. Since ASL can produce quantitative maps, it is important that conversion is done 

respecting scale-slopes stored in the DICOM header. 

ASL data is processed in the native acquisition voxel grid, after having applied optional 

distortion and motion corrections (which do not alter the voxel grid, but rather transform 

data within the same grid). This choice is made on the basis that ASL is typically of low SNR 

and low spatial resolution, which implies high partial volume effects (discussed in section 

3.5). Resampling the data onto a different voxel grid introduces interpolation artefacts that 

degrade data quality and negatively impact perfusion estimation (Kirk, 2021). Analysing the 

data in the native voxel grid as opposed to an anatomical or standard space is desirable 

because it minimises the amount of resampling or interpolation that is applied to the data; 

this is a point of difference with some other pipelines that do transform data6.  

3.2. Kinetic model fitting 

The distinctive feature of the BASIL toolbox is estimation of perfusion and other 

haemodynamic parameters through the approach taken to fitting of the kinetic model to 

estimate physiological parameters. For all types of ASL label-control data, the toolbox uses a 

fast Variational Bayesian inference algorithm to perform iterative non-linear kinetic model 

fitting, typically in a matter of minutes (Chappell et al., 2009). The use of Bayesian inference 

allows for the incorporation of prior information into the analysis, which assists robust 

parameter estimation in the presence of noise, particularly when several parameters are 

being estimated. Within the Bayesian framework, each parameter is treated as a 

component of a multi-variate normal distribution, for which the mean represents the most 

likely estimate and the variance gives a measure of uncertainty. Covariances between 

parameters retain their usual meaning, and all distribution parameters are estimated 

                                                      
5
 https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii 

6
 If alignment to anatomical or standard space is required, the pipeline transforms the perfusion estimates 

rather than the ASL data.  
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voxelwise from the complete data (all of the individual label-control pairs are exploited). 

The use of variance to represent parameter uncertainty is akin to a confidence interval (and 

allows the computation of confidence intervals if required); but it is not the same as the 

variance within a population (which cannot be inferred from a single subject’s data). Figure 

1 shows example parameter maps from BASIL, where the variance has been converted to 

the standard deviation.  

Each parameter is associated with a prior distribution, which can be distributional or spatial. 

A distributional prior is specified in terms of a normal distribution with mean and variance, 

which regularises parameter estimation and reflects the information known about the 

parameter before any data are seen (derived, for example, from population studies). 

Bayesian inference can be viewed as an updating process, whereby the prior distribution is 

refined given the information available from the data. The default priors used by the 

toolbox are documented in Error! Reference source not found. in the Supplementary 

Material. The prior distributions can be thought of as soft constraints, as opposed to the 

hard limits often implemented in non-probabilistic fitting algorithms. Values for the prior 

means have been derived from existing literature where possible (e.g., T1 values which 

assume a 3T field strength) or are fairly typical given normal applications of ASL (e.g., ATT 

values based on typical labelling plane location). Prior standard deviations have been 

chosen to not unduly constrain the inference process by comfortably covering a range of 

plausible expected values.  

The parameters of the distributional priors can be adjusted by the user via the command 

line interface for advanced analyses, for example where a patient population is known to 

have different T1 values from the general population. In particular, the model fitting can 

optionally incorporate a map of subject-specific tissue T1 values in the same voxel grid as 

the ASL data, where this data has been collected. In this scenario, the default prior variance 

on T1 is retained to reflect measurement error in these values.  

The alternative type of prior available within BASIL is a spatial prior, used to enable spatial 

regularisation which is recommended to improve the quality perfusion estimation (Groves 

et al., 2009; Penny et al., 2004). In contrast to the common usage of the term “spatial prior” 

in neuroimaging, this does not encode any particular belief about the value of a parameter 

at different locations within the brain. Instead, the spatial prior encodes the belief that 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00041/2181214/imag_a_00041.pdf by guest on 23 November 2023



 11 

parameter values should not vary greatly between neighbouring voxels on the same slice 

(the prior operates in the xy plane but not along the z axis to account for the large slice 

thickness typically used in ASL acquisitions). This provides a form of adaptive spatial 

regularisation on the estimated perfusion image, whereby the regularisation is driven by the 

confidence of parameter estimates in neighbouring voxels. Thus, where the data are of 

higher quality and there is higher confidence in the voxelwise estimates, there is less 

influence of neighbouring voxels and less apparent smoothing. This is preferable to 

conventional spatial smoothing of the ASL data as a preprocessing step before model fitting, 

since that involves the selection of an arbitrary smoothing parameter (e.g., full-width half 

maximum, FWHM) and can, for multi-delay data, lead to errors due to mixing of voxels with 

different (non-linear) kinetics (Groves et al., 2009). By contrast, no user-selected smoothing 

parameter is required to use spatial regularisation in BASIL. An important consideration for 

application of the spatial prior is that it operates on the voxel grid on which the ASL data is 

represented, but this may not be the voxel grid on which the data was acquired (for 

example, some 3D GRASE sequences are interpolated after acquisition). In either case, the 

underlying assumption of the spatial prior remains valid (a local smoothness constraint), 

though the extent of regularisation may vary. The operation of the spatial prior is illustrated 

in Figure 4. 

 

Figure 4. Perfusion maps derived from single-delay pseudo-continuous ASL with (left) and without (centre) spatial 
regularisation. The difference image is shown on the right. Quantities are in arbitrary units (i.e., non-calibrated data)  

The use of Bayesian inference allows the same algorithm to be used for all data, i.e., single 

and multi-delay. Where a given parameter cannot be estimated from the data, the priors in 

BASIL provide a default value for these parameters, along with a reflection of the 

uncertainty that accrues due to them not being estimable. For example, since it is not 
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possible to estimate ATT voxel-wise from single-delay data, a BASIL analysis will take the 

prior mean as the value of this parameter and the prior variance over ATT will be reflected 

in the estimated confidence in the final perfusion estimate, meaning that it reflects the 

variability introduced by accounting for the lack of knowledge of ATT. 

Inference proceeds in multiple stages to achieve good convergence to a global solution and 

thus a robust estimation of the parameters, following good practice in non-linear model 

fitting. In the first stage only perfusion and ATT are inferred. Subsequent stages widen the 

range of parameters that are estimated, using the values from the previous stage for 

initialisation (in all cases the priors remain the same). Only at the final stage are spatial 

priors applied to perfusion to implement spatial regularisation, using the full set of 

estimated parameters from an analysis without spatial priors as initialization. Table 1 

documents the complete sequence of steps that are possible; the actual steps performed 

depend upon the analysis options chosen. 

Table 1: Multi-step analysis process for kinetic model inference in BASIL. Inference proceeds with only a subset of 
parameters being inferred at each step, with more parameters being progressively added. The table shows a complete 
analysis with all possible parameters (or parameter groups), analyses that do not require inference of all parameters can be 
processed in fewer steps, missing out those not required. Parameter values inferred in one step are used to initialise these 
same parameters in the subsequent step, the priors remain the same for all steps (excepting the introduction of the spatial 
prior in the final step if requested). ATT = Arterial Transit Time, BAT = Bolus Arrival Time, LD = Label Duration, aCBV = 
arterial Cerebral Blood Volume, T1x = T1 of x, where x is one of t = tissue, b = (arterial) blood, gm = grey matter, wm = white 
matter. 

Step Parameters inferred 
 Tissue 

(grey matter**) 

Macrovasculature Labelled bolus 

(arterial input 
function) 

White matter 

1 Tissue Perfusion, ATT    
2 Macrovascular 
correction 

Perfusion, ATT  aCBV, BAT   

3 Label duration 
correction* 

Perfusion, ATT aCBV, BAT LD  

4 Advanced 
kinetics 
(correction for 
dispersion and 
label exchange) 

Perfusion, ATT, 
exchange 
parameter(s) 

aCBV, BAT LD, dispersion 
parameter(s) 

 

5 Correction for 
variable T1 

Perfusion, ATT, 
exchange 
parameter(s), T1t 

aCBV, BAT LD, dispersion 
parameter(s), 
T1b 

 

6a Spatial 
regularisation 

Spatial prior applied to perfusion parameter 

6b Partial 
volume effect 
correction with 

Perfusion**, ATT, 
exchange 
parameter(s), 

aCBV, BAT LD, dispersion 
parameter(s), 
T1b 

Perfusion, 
ATT, 
exchange 
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spatial 
regularisation  

T1gm.  parameter(s), 
T1wm 

Spatial prior applied to GM and WM perfusion parameter  
  
* This is primarily included for use with pulsed ASL when no further control has been made for the label 
duration. 
** Tissue parameters from previous steps are taken to initialise the GM parameters for PVEc step. Initial 
values for GM and WM perfusion are set based on a ratio of 2.5:1 and scaled by the respective GM and WM 
PV estimates. 
 

As part of the inference process the influence of noise on the data is explicitly estimated in 

terms of the magnitude of the assumed white noise on the data in each voxel (defined as 

the precision of the Gaussian likelihood distribution on the measured data values)7. The 

noise parameter influences the degree to which prior information is used to inform the 

parameter estimates, as well as contributing to the resulting confidence in the parameter 

estimates. By default, the prior on the noise parameter is set to be uninformative, with the 

noise parameter being determined from the data. For datasets with fewer than 5 volumes 

(or if the user requests it) a more informative prior is employed that assumes an 

approximate SNR of 10, although ultimately the noise parameter is still estimated from the 

data where possible. This is further discussed in the first section of the supplementary 

material.  

3.3. Kinetic models 

The kinetic model implemented in the BASIL toolbox follows the general kinetic model as 

described in detail by (Buxton et al., 1998). Pulsed (PASL), pseudo-continuous (PCASL) and 

Hadamard time-encoded labelling schemes are supported (the latter requires a prior 

decoding step that can be performed by asl_file). The modular nature of the codebase 

means that new variants of ASL can be incorporated without re-writing other parts of the 

toolbox; for example, this means velocity-selective ASL (Qin et al., 2022) may be supported 

in a future release.  

By default a 'box-car' function is assumed for the arterial input function (AIF) with T1 decay 

at blood T1-rate, and a well-mixed single compartment with venous outflow assumed for 

the residue function with a distinct tissue T1. A range of alternative AIF (Chappell et al., 

                                                      
7
 Formally, the noise precision parameter has as its posterior distribution a gamma distribution with two 

parameters and is subject to a gamma distribution prior.  
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2013a; Hrabe and Lewis, 2004) and residue functions (Lawrence et al., 2000; Parkes, 2005) 

are also available (see Error! Reference source not found. in the Supplementary Material), 

allowing modelling of effects including dispersion and water exchange between capillary 

blood and extravascular space.  

The default approach (i.e. when using the GUI or oxford_asl) is to perform kinetic model 

fitting independently of the calibration so that the calibration can be revisited later without 

needing to repeat the fit. For some combinations in Error! Reference source not found., the 

convolution of AIF and residue function is implemented analytically (using the formulation 

in (Hrabe and Lewis, 2004) for the default case), otherwise numerical convolution 

(trapezium rule with a resolution of 0.1 seconds) is used, which increases the processing 

time. The toolbox GUI includes the option to check whether the analysis to be performed 

matches (is ‘compliant with’) that specified in the Consensus Paper (Alsop et al., 2015). 

Under these conditions the modelling assumptions match those used to arrive at the 

quantification formula in (Alsop et al., 2015)8, although the formula is not used directly. 

3.4. Macrovascular contamination  

Macrovascular contamination arises due to the presence of labelled blood-water within 

major arteries at the time of imaging that is destined for brain tissue outside the voxel, and 

which causes an artificial increase in estimated perfusion within that voxel. This can be 

indicative of arterial transit artefacts, examples of which are given in Jaganmohan et al., 

2021. Contamination from major arteries can be corrected using an extra component in the 

kinetic model (Chappell et al., 2010). Although contamination can arise with either single- or 

multi-delay labelling schemes, it can only be corrected for with multi-delay data. This is 

because the separation of macrovascular and perfusion signals relies on the different 

kinetics and arrival times of these two signal contributions that can only be observed when 

multiple delays are sampled. In practice, major macrovascular contamination is present in 

only a subset of voxels; invoking an extra component in the model increases the risk of 

overfitting and increases the uncertainty of perfusion estimates in voxels with no 

contamination. Hence, the magnitude of the macrovascular component in the model is 

subject to a shrinkage (or Automatic Relevancy Determination) prior (Mackay, 1995) that 

                                                      
8
 Namely, identical tissue and blood T1 values, and no venous outflow component. 
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seeks to ensure that this component is only included where the data support it. This 

enhances the robustness of perfusion quantification across subjects that may have differing 

extents of macrovascular contamination (particularly if cerebrovascular disease is present).  

If the data has calibration, the magnitude of the macrovascular component gives a measure 

of arterial blood volume (aBV) (Chappell et al., 2010; Petersen et al., 2006), the fraction of 

the voxel occupied by macro vessels, which are typically arterial. This should not be 

confused with the (total) blood volume, as estimated by other perfusion modalities that 

includes all vascular compartments in the voxel. The macrovascular component in the 

kinetic model follows the form of the AIF and thus can incorporate the effects of dispersion. 

The macrovascular component has a separate and independent arrival time parameter, the 

bolus arrival time (BAT), rather than the ATT which applies to the kinetics of the tissue.  

3.5. Partial volume correction 

A major feature of BASIL is the inbuilt partial volume effect correction (PVEc) method. PVEc 

seeks to separate the perfusion contributions from grey and white matter (and account for 

the zero-perfusion signal contribution from CSF) within a single voxel using estimates of the 

partial volumes of grey and white matter. The approach taken in BASIL follows the method 

in (Chappell et al., 2011) whereby the signal in a voxel is modelled as a combination of grey 

and white matter kinetic signals which are mixed in proportion to the volume of each tissue 

within the voxel. Since this model is ill-posed, regularisation is imposed in the form of spatial 

priors on the grey and white matter perfusion values separately. This has the effect of using 

immediate neighbouring voxels to inform the tissue-specific perfusion estimates in a given 

voxel, following the principles used in other voxelwise correction methods (Asllani et al., 

2008; Liang et al., 2013). Since this regularisation is a prior-based approach, it is adaptively  

driven by data quality, meaning that greater spatial detail can be preserved where the data 

supports this (a detailed investigation is given in (Zhao et al., 2017)). For example, where 

multi-delay data is used, which provides greater separability between grey and white matter 

kinetics due to differences in ATT and T1, the influence of the spatial prior will be 

automatically reduced. Although the method in (Chappell et al., 2011) was originally 

demonstrated for multi-delay data, the implementation in BASIL generalises to the single-

delay case (benefitting from specification of a prior on the noise parameter where only a 

few measurements are available). 
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PVEc requires voxelwise estimates of both GM and WM partial volumes. The pipeline can 

extract these from the output of an existing anatomical analysis using the FSL 

comprehensive anatomical analysis tool, fsl_anat; or by applying the FSL FAST 

segmentation tool (Zhang et al., 2001) to a supplied structural image; or by using user-

supplied partial volume estimates directly. Estimates not in the same space as the ASL data 

(and particularly where the resolution of the estimates is higher than the ASL resolution, as 

is common for those derived from structural images) are transformed into ASL space using 

FSL applywarp with supersampling. In contrast with standard interpolation directly to the 

lower resolution, an intermediate supersampling step can be thought of as measuring the 

degree of overlap between corresponding voxels at the input and output resolutions, which 

better preserves partial volume data. The effectiveness of PVEc depends on the accuracy of 

partial volume estimates and, by extension, the accuracy of registration where this is 

needed to transform the estimates into the ASL data space (see (Zhao et al., 2017)). 

When the BASIL pipeline is run with the PVEc option it will do a normal, non-PVEc, analysis 

first and use this to initialise the PVEc analysis (the non-PVEc perfusion image is also used to 

refine registration with the structural image). In the final output, separate GM and WM 

perfusion images are produced, along with ATT images for multi-delay data. The algorithm 

calculates perfusion (and ATT) values for all voxels within the brain mask which will include 

extrapolation of values within voxels with little or none of the appropriate tissue. Hence, 

GM and WM masks (thresholded at 10% tissue partial volume) are used to produce masked 

GM and WM perfusion (and ATT) maps for visualisation and further analysis. As FAST partial 

volume estimates for subcortical structures cannot be interpreted in the same way as for 

cortical GM (due to differing tissue properties), these regions are removed from the PVEc 

output using the definitions of cortical grey matter and cerebral white matter in the 

Harvard-Oxford atlas. Perfusion estimates for these regions are still available in the non-

PVEc output, but they are excluded from PVEc output because it is difficult to interpret 

them in light of the ambiguity of their partial volume estimates. Where this is not desired, 

the user will need to produce and apply their own ROI masks.  

3.6. Calibration 

The BASIL pipeline supports two widely-used approaches to calibration:  
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● voxelwise, where the voxel values in the M0 image are used to estimate a 

magnetization of arterial blood for each corresponding voxel in the perfusion image. 

This is the recommended approach of the ASL Consensus paper and is more 

commonly used in clinical contexts (Alsop et al., 2015).  

● reference region, where the mean intensity within a specific region of interest (ROI) 

of the M0 image is used to estimate a single global value for the magnetization of 

arterial blood (Pinto et al., 2020). 

For the voxelwise method the toolbox follows the recommendations of the ASL Consensus 

paper and corrects for proton density differences between tissue and blood using a relative 

water density (partition coefficient) of 0.9 (Herscovitch and Raichle, 1985), and corrects for 

a short TR when the TR for the M0 image is less than 5s, assuming for all tissues a T1 of 1.3s 

(the reference value for GM at 3T). The calibration image is smoothed with a median filter 

(using a 3x3x3 voxel kernel) to suppress noise. To reduce 'edge-effects' at the pial boundary, 

which arise due to partial voluming of brain tissue with CSF and tissue that are outside of 

the brain and give rise to a high intensity rim in the calibrated perfusion image, the pipeline 

implements a strategy of erosion (using a 3x3x3 voxel kernel) and extrapolation on the 

brain-masked M0 image prior to calibration. This pre-processing and the effect on the 

resulting perfusion image are illustrated in Figure 5. The derivation of the registration 

between the M0 image and ASL is discussed in the following section.  
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Figure 5: Calibration using a voxelwise approach. Left: calibration using the original calibration image (lower image) 
results in spurious high perfusion voxels around the pial boundary of the brain. Right: Pre-processing of the calibration 
image (lower image) reduces the presence of CSF in pial voxels of this image, which suppresses artefacts in the resulting 
perfusion image. 

For the reference region method, the pipeline requires an ROI to be specified. By default, 

the ventricular CSF space is used, since this is an easy brain region to identify that will 

enclose multiple voxels without partial voluming at typical ASL resolution. Correction is 

made for partial T1 recovery and optionally for T2 mismatch between CSF and brain tissue 

using parameters in Error! Reference source not found. in the supplementary material. 

Alternatively, a WM ROI can be specified, and appropriate tissue-specific corrections will be 

performed. A GM ROI can be provided but is not recommended due to partial volume 

effects. The pipeline includes the functionality to automatically generate the reference 

region ROI for the different tissue types should a structural image be available. The 

preference is to supply a structural image that has already had structural processing 

performed (including brain extraction and segmentation to generate partial volume 
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estimates); to this end the toolbox accepts the output of fsl_anat. Alternatively, FSL FAST 

will be applied directly to the brain extracted structural image to generate partial volume 

estimates with three tissue classes. When performing reference region calibration, it is not 

necessary to register the M0 image to the ASL.  

For automated identification of a ventricular CSF ROI, the partial volume estimate for the 

CSF component from the FAST segmentation is selected, this is then masked with an ROI 

defined from the left and right ventricles from the Harvard-Oxford Atlas. The ventricular 

ROIs are transformed into the same space as the CSF partial volume estimates, thresholded 

at 0.1, binarized and then eroded. The resulting masked CSF partial volume estimates are 

then transformed into ASL space using the registration performed between ASL data and 

structural image (using the downsampling process described in section 3.5). Finally, the 

resulting masked partial volume estimates are thresholded at 0.9 to leave only voxels with 

minimal partial volume effects. This procedure is deliberately conservative and is not meant 

to produce an accurate mask of the whole of the ventricular space, but rather to ensure a 

sample is taken from multiple voxels that are well within the ventricles. 

For automatic definition of a WM ROI, the partial volume estimates from the WM 

component of the segmentation are transformed into the ASL data space (using the result 

of the registration to the structural image) and thresholded at 0.9; no further masking is 

applied.  

Correction for coil sensitivity, where not performed during acquisition, can optionally be 

applied as part of the reference region calibration operation (it is implicit in the voxelwise 

method). This is achieved either by supplying a sensitivity image or indicating that the bias 

field of the structural analysis (fsl_anat) should be used, if available. Alternatively, two 

M0 images can be supplied, one of which is a reference with no (or minimal) sensitivity 

variation, typically acquired using the body coil. 

3.7. Motion and distortion correction 

Motion parameter estimation can optionally be performed using FSL MCFLIRT (Jenkinson et 

al., 2002) on the ASL timeseries with the M0 image as reference (if this is not possible, the 

middle volume in the series is used). The rationale for using the M0 image is to increase the 

robustness of the estimation to variation in images from ASL data in which the contrast 
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varies, e.g., due to variations in the static tissue signal present at different delays. To 

minimise interpolation artefacts when the estimated transformations are applied to the 

data (in case there is an overall motion related misalignment with the M0 image), the 

estimated transformations for each volume in the series are re-referenced to the middle 

volume in the series using the transformation between the middle volume and the 

calibration (which serves as the registration between ASL data and the M0 image, if 

required for voxelwise calibration). There exists some debate as to whether motion 

correction is advantageous for ASL imaging (Alsop et al., 2015) and it is left to the user to 

decide if it should be performed. One consideration is that high-motion volumes can be 

regarded as outliers in a model-fitting sense, and such outliers may introduce bias if they 

violate the underlying assumption of Gaussian noise. This is somewhat similar to 

approaches that apply variable weighting to the data: the algorithm will still tend towards 

the solution implied by the non-outlier data, but with greater uncertainty than would 

otherwise be the case. If motion correction is not requested, a registration between the 

calibration image and first volume of the ASL series is obtained using FSL FLIRT (and later 

updated once a perfusion image is available; see section 3.8).  

The pipeline implements correction for distortion due to B0 field inhomogeneity when 

supplied either with a fieldmap, or an additional M0 image with reversed phase encoding 

compared to the main M0 image. When a fieldmap is supplied, FSL epi_reg is used to 

estimate the correction warp field which can then be combined with a user supplied 

gradient distortion warp field and applied to the ASL data series along with the estimated 

motion correction transformations. In this correction, the Jacobian of the warp is extracted 

and used to correct intensity scaling to account for the effects of distortion on signal 

intensity, though the correction is imperfect and SNR will remain lower in affected regions. 

When using phase encoded reversed M0 images, FSL topup (Andersson et al., 2003) is used 

to estimate and apply distortion correction to data that has already had motion correction 

applied. 

3.8. Registration 

The registration functionality of the pipeline is built on FSL tools, specifically FLIRT 

(Jenkinson et al., 2002; Jenkinson and Smith, 2001) and epi_reg. The main objective of 

registration in the toolbox is to align the perfusion image (and other images in ASL 
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acquisition space, such as ATT) with the structural image. The estimated transformation can 

be combined with others, such as the (non-linear) transformation between structural and 

MNI152 standard images provided by fsl_anat. 

An approximate registration is performed both as an initialisation for the main registration 

and also for use in ASL data pre-processing prior to kinetic model fitting. For example, the 

creation of a brain mask from the anatomical image to define the extent of the analysis 

region in the kinetic model inference. This uses a 6 degree-of-freedom rigid FLIRT 

registration with either the brain extracted M0 image or mean of the label-control 

subtracted ASL timeseries as the base image.  

The main registration process in the pipeline (performed by asl_reg) uses boundary-based 

registration (BBR) (Greve and Fischl, 2009) and thus needs to be provided with a white 

matter segmentation (normally obtained from the fsl_anat output). When a fieldmap is 

available, this can be included in the registration process (internally using the epi_reg 

command). By default, the pipeline uses the uncalibrated perfusion-weighted image, i.e. 

after kinetic model fitting and before calibration, as the source image for this because it 

provides better contrast between grey and white matter than the control or M0 images, 

which is beneficial for BBR. The user can specify alternative registration sources: the mean 

difference image, the calibration image (if it is pre-registered with the ASL), or some other 

arbitrary reference. If major disturbances are expected, the user is recommended to 

perform their own registration and pass this directly to override all pipeline registration.   

3.9. ROI reporting 

When a structural image is provided, the pipeline will automatically report on the mean 

whole-brain perfusion within grey and white matter. For this, ROIs are defined from the 

partial volume estimates transformed to the resolution of the perfusion image and using a 

threshold of 90% for WM and 80% for GM. The lower threshold for GM is a pragmatic 

choice reflecting the low number of ‘pure’ voxels at a typical ASL resolution, but the user 

can select a different threshold if appropriate for their data. For example, (Chappell et al., 

2021) suggests a threshold of 70% as a pragmatic choice for typical ASL resolution, e.g. 

when following the resolution recommendations in (Alsop et al., 2015). When available, 

these ROIs are also applied to calculate separate mean whole-brain GM and WM perfusion 
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and ATT values after PVEc. A more restrictive cerebral GM value is also calculated by using 

the cortical GM and cerebral WM regions in the Harvard-Oxford atlas to mask out 

subcortical structures from the PVEc output maps.  

Optionally, the BASIL pipeline will calculate summary measures of perfusion (and ATT where 

available) within ROIs defined by the Harvard-Oxford cortical and subcortical atlases. The 

probability maps from the atlases are transformed to the resolution of the perfusion images 

and thresholded at a probability fraction greater than 0.5. For any ROI with greater than 10 

voxels the following summary statistics are calculated: mean, standard deviation, median 

and interquartile range. Additionally, the precision-weighted mean is calculated using the 

voxelwise precision (1/variance) estimates on the perfusion values. This measure thus 

accounts for variation in the confidence of perfusion estimates within the ROI. Supporting 

this, the I2 measure is also calculated, which describes the percentage of variation across 

voxels that is due to heterogeneity rather than chance (Higgins et al., 2003). Qualitatively, 

this indicates the variation of perfusion within the ROI that is not attributable to the 

estimated uncertainty in the voxelwise values. This is offered as a potentially useful metric, 

but it has not been explored extensively and no specific recommendation is made for its 

use. All of these summary measures are provided for the regions defined in the Harvard-

Oxford atlases irrespective of the tissue content of the ROI, along with separate calculations 

where only the GM (at least 80% PV) or WM (at least 90% PV) are included. 
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3.10. Quality control  

The BASIL toolbox does not currently provide any form of automated quality control (QC) 

for the main processing steps of the analysis pipeline, though this is an area of active 

research. A number of pipeline outputs permit the user to perform manual QC. These 

include summary measures of perfusion and ATT as detailed in section 3.9; perfusion 

estimates both before and after calibration; and the global M0 value or reference region 

mask used for calibration. The latter two help check for calibration issues and permit the 

user to perform their own calibration. When the pipeline is run with all structural processing 

options, pipeline outputs will be provided in native acquisition, structural and standard 

(MNI152) space, which enables the user to check registration quality.  

4. Summary of tools in the BASIL toolbox 

asl_gui – the GUI for the toolbox. This offers a complete analysis solution for common ASL 

variants appropriate to the majority of use cases. This performs, via oxford_asl, the 

processing pipeline detailed in section 3. This article has largely focused on the processing 

steps available in the GUI. 

oxford_asl – the main command line interface for the toolbox, which provides a 

scripting-based solution suitable for the majority of use cases. As with the GUI, it performs 

the processing pipeline detailed in section 3. In contrast to the GUI, oxford_asl also 

allows for greater user control over individual processing steps, and batch-processing of 

analyses prepared using the GUI.  

The following tools are components of the BASIL toolbox that are used within oxford_asl 

and can be directly accessed by an advanced user building a bespoke ASL processing 

pipeline. 

basil – the command line tool for the kinetic model inference, also incorporating PVEc. 

This allows for a variety of custom kinetic modelling to be performed on data, separate from 

other associated steps such as calibration and registration. This would be appropriate for a 

user who wishes to customise their kinetic analysis beyond the options available through 

oxford_asl, or wants to undertake that stage of analysis entirely independent of 

calibration and other processing performed using FSL tools.  
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asl_calib – a command line tool for performing the steps involved in calibration, namely 

the estimation of the magnetization of arterial blood from an M0 image. This would be 

appropriate for a user who needs to perform a customised calibration, e.g., using saturation 

recovery images, that is not offered by oxford_asl . 

asl_reg – a command line tool that performs the steps needed for registration of ASL data 

to an anatomical image. This is a wrapper for other FSL registration tools (FLIRT and 

epi_reg) specifically tuned for ASL. This might be used if the default registration within 

oxford_asl is not successful for a given dataset. 

asl_file – a command line helper tool for manipulating ASL data, this tool understands 

that ASL data comes with combinations of label-control pairs and different delays within a 

single 4D image. This might be used to manipulate ASL data, e.g., separate label and control 

images, perform subtraction, and undertake decoding of time-encoded data. 

5. Associated and related tools 

The BASIL toolbox contains a number of additional tools not included within the default 

pipeline implemented by oxford_asl, but which might be used where the data or 

application demands it. 

asl_deblur – a command line tool that compensates for through plane blurring 

introduced in data with long readout out duration (such as single shot spiral or GRASE type 

acquisitions), based on the method used in (Chappell et al., 2011). 

enable – a command line tool for the automatic removal of low quality or artefactual ASL 

data volumes, based on (Shirzadi et al., 2017). This can be called from within oxford_asl . 

fabber – a command line tool that performs non-linear model inference via the fast 

variational Bayesian inference algorithm from (Chappell et al., 2009) including spatial priors 

(Groves et al., 2009; Penny et al., 2004). It is used within the BASIL toolbox for kinetic model 

inference, where it is called via basil command line tool. Within FSL, a variant of fabber 

is also offered for use with dual-echo ASL for functional MRI applications. The majority of 

users will not need to interact with this tool directly for ASL applications unless they wish to 

implement a different kinetic model or further customise parameter prior distributions. 
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FIX – a command line tool for ICA denoising of fMRI data that can be applied to ASL data 

(Carone et al., 2019). 

quasil – a version of the basil command line tool tailored for QUASAR ASL that exploits 

the combination of flow-suppressed and non-suppressed data (Chappell et al., 2013b; 

Petersen et al., 2006). 

toast – a version of the basil command line tool tailored for Turbo-QUASAR data. 

6. Future Directions 

The BASIL toolbox was originally developed in the context of neuroimaging studies that 

focus on cortical GM perfusion and analysis of volumetric perfusion images. There is 

growing interest in accurate and robust measurements of perfusion in other brain regions 

and in other representations that are more specifically tied to the underlying anatomy. In 

the future we intend for BASIL to support estimation of perfusion on the cortical surface 

(Kirk, 2021), exploiting information that is not available from a simple post-projection of 

volumetric perfusion onto the cortical surface, but instead using methods that account for 

partial volume effects around the cortex and can separate cortical GM perfusion from WM 

perfusion contributions. Perfusion images from the BASIL toolbox already include WM 

regions with specific WM perfusion estimates being produced via PVEc and mean WM 

perfusion being reported. In the future, the toolbox will additionally report on the perfusion 

within subcortical structures directly, incorporating knowledge of partial volume effects to 

make more accurate and structure-specific measurements. 

Some of the design decisions and assumptions made in the toolbox may not be applicable 

for the study of disease. Tailoring of the toolbox for disease states is a major undertaking 

that has not been performed to-date and no claims are made to this effect. One particular 

area for consideration would be whether the priors could be updated with disease-

appropriate values, though the purpose of priors is that the data can override them when 

reality is different to what the prior assumes, so pathology should appear in the results. The 

only time this breaks down is if the data is so noisy that it does not support any deviation 

from the prior. In Chappell et al., 2011, it was observed that the spatial prior could handle 

reasonably sharp changes in perfusion, e.g. due to a lesion, without completely masking 

pathology.  
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For the oxford_asl pipeline specifically, two areas of future development concern 

automated QC and improved reporting. The goal with automated QC is to spot common 

failure modes for ASL analysis such as excessive motion, poor registration and spurious 

calibration. For motion, a variety of strategies may be adopted, including frame censoring or 

variable weighting of the timeseries (Shirzadi et al., 2017, Tanenbaum et al., 2015). For 

reporting, the objective is to produce rich HTML documents with embedded figures and 

graphics for visual inspection of key pipeline outputs, as opposed to the textual-only 

reporting of the current version. A dedicated interface between the BASIL toolbox and the 

ASL-BIDS standard to enable batch processing of large datasets is in preparation. 

7. Conclusion 

The BASIL toolbox enables flexible and advanced analysis of ASL data in the brain with a 

focus on the quantification of perfusion and other haemodynamic measures. The toolbox is 

built around a Bayesian model-based inference algorithm. This allows it to be used on a 

wide variety of ASL data, allowing the user to exploit the advantages offered by multi-delay 

ASL variants, whilst also being able to process data from more commonly available 

acquisition protocols. The BASIL toolbox is an integrated part of FSL, allowing it to be used 

with other neuroimaging data and be integrated into multi-modal neuroimaging analysis 

pipelines. 
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