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Abstract

Accurate assessment of cerebral perfusion is vital for understanding the hemo-
dynamic processes involved in various neurological disorders and guiding clini-
cal decision-making. This guidelines article provides a comprehensive overview
of quantitative perfusion imaging of the brain using multi-timepoint arterial
spin labeling (ASL), along with recommendations for its acquisition and quan-
tification. A major benefit of acquiring ASL data with multiple label durations
and/or post-labeling delays (PLDs) is being able to account for the effect of
variable arterial transit time (ATT) on quantitative perfusion values and addi-
tionally visualize the spatial pattern of ATT itself, providing valuable clinical
insights. Although multi-timepoint data can be acquired in the same scan
time as single-PLD data with comparable perfusion measurement precision,
its acquisition and postprocessing presents challenges beyond single-PLD ASL,
impeding widespread adoption. Building upon the 2015 ASL consensus arti-
cle, this work highlights the protocol distinctions specific to multi-timepoint
ASL and provides robust recommendations for acquiring high-quality data.
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Additionally, we propose an extended quantification model based on the 2015
consensus model and discuss relevant postprocessing options to enhance the
analysis of multi-timepoint ASL data. Furthermore, we review the potential
clinical applications where multi-timepoint ASL is expected to offer significant
benefits. This article is part of a series published by the International Society for
Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to
guide and inspire the advancement and utilization of ASL beyond the scope of
the 2015 consensus article.
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1 INTRODUCTION

Arterial spin labeling (ASL) perfusion MRI is a
non-invasive technique to quantitatively map the supply
of blood to an organ. Given the critical role perfusion
plays in nutrient delivery, the ability to quantitatively
map perfusion has an important role in the diagnosis
and monitoring of a wide variety of diseases. The major
MRI platforms now all have ASL sequences capable of
obtaining high-quality whole-brain perfusion images
within a few minutes of scanning. ASL has been validated
against exogenous contrast enhanced perfusion MRI1–4

and PET,5–11 has been demonstrated to be reproducible
in multi-center studies,12,13 and has been increasingly
deployed in clinical settings.14–19

To achieve simple, robust perfusion quantification, the
consensus recommendation, published in 2015,20 was to
perform repeated acquisitions using a fixed label duration
(LD) and single post-labeling delay (PLD)i; the resulting
data being averaged to achieve sufficient SNR for inter-
pretation. An acknowledged limitation of this approach
is potential sensitivity to variation in the time it takes
for blood to travel from the labeling region to the tissue
in each voxel, known as the arterial transit time (ATT).
The recommendations controlled for this by recommend-
ing a combination of LD and PLD that would be largely
insensitive to ATT except where it is prolonged beyond a
typical range; formally, single-PLD ASL will be relatively
insensitive to ATT when the PLD used is longer than the
ATT.23

An alternative approach, also discussed in the 2015
consensus paper, is the use of multi-PLD/multi-timepoint
ASL.23–28 In this case, the time-based parameters of LD
and/or PLD are varied over repeated acquisitions. The
resulting data can be combined via kinetic modeling to
produce estimates of both cerebral blood flow (CBF) and
ATT, with the estimated CBF being inherently insensitive
to variation in ATT (see Figure 1).29,30 This is particularly
relevant in settings where the ATT deviates substantially

from normal, for example, in steno-occlusive diseases (see
Figure 2),33,34 or is variable between individuals or con-
ditions, for example, in cerebrovascular reactivity (CVR)
studies.11 ATT has also been shown to be a useful phys-
iological marker of disease in and of itself.35–44 Finally,
multi-timepoint ASL offers the opportunity to extract
quantitative maps of additional hemodynamic parame-
ters.45–48

The 2015 single-PLD consensus20 still represents the
recommended clinical ASL implementation due to its sim-
plicity and ease of use. However, there has been continued
technical development alongside substantial growth in the
use of ASL and understanding of how to deploy it in
research and clinical practice since that time. Therefore,
we believe it is timely to offer specific recommendations
for situations where quantitative perfusion metrics derived
from multi-timepoint ASL would be preferred and the
increase in postprocessing complexity can be accommo-
dated.

2 RECOMMENDATIONS

In this section, we outline the recommendations for
multi-timepoint ASL methodology. We build on the 2015
consensus recommendations20 and highlight areas of dif-
ference due to the specific considerations when using
multi-timepoint ASL. Note: These recommendations have
been made for a field strength of 3T and may be
sub-optimal at other field strengths. Table 1 provides a
concise summary of key acquisition and postprocessing
recommendations.

2.1 ASL labeling approaches

Due to its greater SNR, inherent control of the LD, com-
patibility with modern hardware, and wide-availability,
PCASL50 is also recommended for multi-timepoint ASL.
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WOODS et al. 471

F I G U R E 1 Demonstrating the relative insensitivity to ATT of multi-timepoint PCASL data. The single-PLD data show CBF
underestimation in regions where the PLD is shorter than the ATT. When a sufficiently long PLD is used, the CBF estimated from single-PLD
scans is relatively insensitive to ATT. However, by jointly fitting data at multiple PLDs to a kinetic signal model, ATT-insensitive CBF and
ATT can be directly measured.

F I G U R E 2 Demonstrating changes in ATT with disease. The top row shows ATT maps at various slices for a patient with carotid artery
occlusion, while the bottom row shows group average ATT maps from nine healthy young subjects. The data were corrected for PVEs31 and
represents estimates of pure GM ATT. Note the left–right symmetry and overall lower ATT in the healthy young subjects compared to the
patient. ATTs in the ipsilateral hemisphere were on average∼1 s longer for the patient. Figure reproduced from Ref 32 with permission.

Given our recommendation for using PCASL as the label-
ing technique, many of the following recommendations
refer specifically to this technique.

Although pulsed ASL (PASL)51–54 can also be used for
multi-timepoint measurements, it has lower SNR. How-
ever, when ATT is the primary measurement of interest,
rather than CBF, PASL could be considered unless very
long ATTs are expected. This is because it is possible to
sample more of the label inflow with PASL than with
PCASL without reducing the LD. In cases when PASL
is used, the QUIPSS II/Q2TIPS21,55 modification is rec-
ommended to control the LD and avoid the need for
estimating it during postprocessing. A particular imple-
mentation of such methods, in combination with multiple
Look-Locker-like readouts, is used in the QUASAR tech-
nique.53

Velocity-selective ASL56 is a highly promising alter-
native to multi-timepoint PCASL/PASL for measuring
ATT-insensitive CBF, although in its traditional form
cannot measure ATT. The negligible transit time in
velocity-selective ASL57 makes it a particularly robust
choice for measuring CBF in cases of severely delayed
blood arrival.58 A review of velocity-selective ASL and
associated recommendations can be found in Ref 22.

2.2 Labeling: spatial placement

An important consideration for multi-timepoint measure-
ments is the PCASL labeling plane location because this
has a direct impact on the measured ATT.59

Simple placement options, which only require a fast
localizer scan, include placing the labeling plane 85 mm
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T A B L E 1 Major recommendations for quantitative cerebral perfusion MRI using multi-timepoint ASL.

Key multi-timepoint recommendations

Acquisition

1. Use of pseudo-continuous ASL (PCASL).

2. Protocol design: either sequential, time-encoded and hybrid methods (see Figure 3), depending upon availability and application.

3. Use of variable TRs, where the TR is minimized for each LD/PLD combination, for greater time efficiency.

4. Optimize the background suppression (BS) inversion timings for each TR.

5. Sequence looping: inner-loop is ASL condition (label/control conditions or time-encodings), followed by image segments, then
LD/PLD adjustments, with averages in the outermost loop.

6. Scan duration: a protocol of minimum ∼4 min for quantitative multi-timepoint ASL at 3T when reliable parameter estimates are
required at an individual level.

Postprocessing

7. At minimum, estimate perfusion and ATT from multi-timepoint data using a kinetic signal model.

8. Use of an extended version of the single-PLD ASL quantification model from the 2015 consensus paper that incorporates the
effects of variable ATT (Eqs. 2 and 3)

9. In general, model intravascular signals rather than suppress them.

10. When vessel suppression has not been used, include an extra intravascular component in the quantification model (Eq. 6).

11. Use of motion correction to further reduce the impacts of motion beyond what BS can achieve.

inferior to the anterior commissure-posterior commissure
line in adults or just below the inferior border of the cere-
bellum, although placement between the second and third
cervical vertebrae may be more robust across subjects.60

Greater robustness to reduced labeling efficiency in one or
more arteries due to tortuous blood flow can be achieved
by using an angiographic survey to place the labeling
plane. However, because labeling plane placement is par-
ticularly robust to angulation of the carotid arteries due to
their fast blood flow velocities,61 any additional placement
efforts should focus on robust positioning relative to the
vertebral arteries. Care should also be taken to avoid plac-
ing the labeling plane near dental implants that can lead
to large resonance offsets, reducing labeling efficiency.

Within a study, consistency of positioning, robustness
within a given workflow, and avoidance of direct tissue
saturation effects within the imaging region are key con-
siderations for labeling plane location. It should be noted
that positioning is fixed in many commercial implementa-
tions. In all cases, we recommend the positioning strategy
be reported to allow others to reproduce the protocol.

2.3 Protocol timings

Unlike single-PLD ASL, where multiple volumes
are acquired with the same fixed LD and PLD, a
multi-timepoint protocol acquires multiple label/control
image pairs with a combination of different LDs and/or
PLDs. Many methods for acquiring this dynamic data have

been developed and, while they can all be successfully
utilized, each has advantages and disadvantages which
we have summarized here. We recommend that one of the
strategies illustrated in Figure 3 is used to achieve a range
of LDs and/or PLDs, including sequential, time-encoded
and hybrid methods, depending upon availability and
application.

Although multi-timepoint ASL requires the acquisi-
tion of more than a single label/control pair, the scan
time need not be longer than that of a single-PLD acqui-
sition, where the minimum recommended scan time is
∼2 min20 due to necessary signal averaging. This is typi-
cally sufficient to acquire four to five different timepoints,
depending on the type of readout used (e.g., single-shot
EPI, multi-shot/segmented 3D methods), and although
fewer averages can be acquired at each timepoint, the data
are combined during the fitting process, thus achieving
a similar level of signal averaging and noise suppression
to single-PLD ASL but with the advantage of additional
hemodynamic information.27,62

2.3.1 Sequential

The simplest approach to acquire multi-timepoint data
is to perform a series of single-PLD scans with vary-
ing PLDs.3,23,24,63 However, we recommend that the PLDs
are interleaved as much as possible so that the distribu-
tion of PLDs acquired at any given time closely matches
the final targeted distribution. When each PLD has the
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WOODS et al. 473

F I G U R E 3 Illustrating the timing principles of the recommended multi-timepoint PCASL protocol types. The LDs are depicted as
orange and gray boxes, representing label and control conditions, respectively. The PLD is the time between the end of the LD and the start of
the image readout. Adapted from Ref 49 with permission.

same number of averages, this is simply achieved by
the sequence looping over each PLD before acquiring
the next average. This may reduce motion artifacts by
minimizing the acquisition time between each PLD, but
also distributes the PLDs throughout the scan, potentially
reducing measurement bias from transitory physiological
variation. The repeated acquisitions can then be averaged
at the end of the scan for visualization. This approach is
referred to as sequential multi-timepoint ASL.

Sequential PCASL (Figure 3A) is widely available and
may be more robust to subject motion than time-encoded
PCASL but, in general, it has lower CBF and ATT pre-
cision than hybrid protocols and lower ATT precision
than time-encoded protocols (see below).27 Although the
LD is often kept constant, it can also be varied with
the PLD when using PCASL to provide greater time
efficiency57,64–66 and increased measurement precision.27

Finally, to achieve greater time efficiency, we recommend

using variable minimum TRs, where the TR is minimized
for each LD/PLD combination in the acquisition (i.e., the
time between the end of the readout in one TR and the
start of labeling in the next TR is fixed and minimal). When
using variable minimum TRs, particular care should be
taken to robustly saturate the imaging volume at the start
or end of each TR.

2.3.2 Time-encoding

Time-encoded PCASL25,26,67–68 (Figure 3B, sometimes
referred to as “Hadamard-encoded PCASL”) was intro-
duced as a time-efficient alternative to sequentially
varying the LD and PLD. Rather than acquiring each
image with a single combination of LD and PLD, the
PCASL preparation is split into multiple sub-boluses. Each
sub-bolus has an effective LD and PLD and the acquired
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images contain a mixture of their signals. The label/control
conditions for each sub-bolus are varied across multiple
TRs using a linearly independent pattern. Subsequently,
signals associated with each sub-bolus can be separated via
simple addition and subtraction of the acquired images in
a process called “decoding” (see Figure 4).

Hadamard encoding69 is typically used to define the
encoding pattern because of its optimal efficiency: only N
images are required to decode N-1 timepoints and the mea-
surement noise is reduced by a factor of N/2 compared
to a matched sequential protocol.25 However, because the
labeling period is split into multiple sub-boluses, most of
the sub-boluses have relatively short LDs (see Table 2),
resulting in lower signal compared to the typically long
LDs used in sequential acquisitions. This can decrease, and
sometimes outweigh, the noise averaging benefits for CBF
accuracy compared to sequential acquisitions, depending
on the protocol timings (e.g., see the similar CBF errors
for time-encoded and sequential protocols in Figure 5).27,70

Nevertheless, time-encoded preparations generally have
superior ATT accuracy.27,70

Two time-encoded protocols have, so far, proved partic-
ularly SNR-efficient for CBF measurement and are similar
in that they seek to use longer LDs for sub-boluses which
have longer PLDs. One is the “free-lunch” approach,67,68

where the first sub-bolus has a long LD and PLD,

similar to single-PLD PCASL,20 but the PLD is filled
with the remaining time-encoded sub-boluses. The other
is the T1-compensated protocol,67 where the LDs of
each sub-bolus are chosen such that the total signal
of each decoded perfusion-weighted image is equal,
that is,

LDi = T1b ⋅ ln
(

1 +
(

1 − e
−LD1
T1b

)
⋅ e

−ti
T1b

)
(1)

for i = 2, … ,N, where N is the number of sub-boluses,
LDi is the ith LD, t is the time from the end of first LD to
the start of the ith LD, with t2 = 0 and ti =

∑i−1
n=2LDn, and

T1b is the longitudinal relaxation time of blood. The min-
imum LD should generally be >50 ms to avoid signal loss
due to bolus dispersion.67

A possible downside of time-encoding is its higher sen-
sitivity to image artifacts, especially those arising from
motion, because more than two images must be com-
bined to generate the individual difference images associ-
ated with each sub-bolus. Hence, unlike sequential acqui-
sitions, it is not possible to individually remove cor-
rupted label/control pairs. This increased motion sen-
sitivity can be mitigated by using effective BS and
Walsh-ordering of the Hadamard matrix.71 Despite this
drawback, time-encoding has been successfully used in a
range of clinical and research applications.25,72,73

F I G U R E 4 Demonstrating the time-encoded timing decoding process for a 4 × 3 Hadamard encoding pattern. Four encoded images (A,
B, C, D, shown in green) are acquired from which three perfusion weighted images can be decoded, each with a different LD and effective
PLD. The LDs are depicted as orange and gray boxes, representing label and control conditions, respectively. The process of decoding each of
the three perfusion weighted images are shown top-right, bottom-left, and bottom-right. The equivalent LDs and PLDs of each decoded
perfusion weighted image for a sequential multi-timepoint protocol are shown as black boxes.
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WOODS et al. 475

T A B L E 2 3T multi-timepoint PCASL protocol timings optimized for CBF and ATT using two ATT ranges: 0.5–1.8 s (a typical ATT
range for young healthy subjects) and 0.5–2.5-s (an extended ATT range for more robust use in older and clinical subjects).

Protocol LDs (ms) PLDs (ms) NT NAve /NSeg NAcq

Scan
duration
(min:s)

ATT range 0.5–1.8 s

Sequential
Multi-PLD

2175 100, 100, 1275, 1800, 2100 5 8 80 5:00

Sequential
Multi-LD/PLD

1925, 1825, 2300, 2300,
2300

175, 300, 1300, 1750, 2050 5 8 80 5:00

Time-encoded
T1-compensated

1550, 775, 525, 400, 325,
275, 225

100 7 8 64 4:59

Hybrid
T1-compensated

2250, 925, 575 175, 350, 600, 625 12 4 64 4:43

ATT range: 0.5–2.5 s

Sequential
Multi-PLD

2050 200, 775, 775, 775, 1800,
2275, 2475, 2675, 2800

9 4 72 5:00

Sequential
Multi-LD/PLD

2300, 1850, 1825, 1800,
1150, 2300, 2300, 2300,
2300

200, 975, 1000, 1025, 1675,
2125, 2375, 2625, 2775

9 4 72 4:59

Time-encoded
T1-compensated

2150, 900, 575, 425, 350,
275, 250, 200, 175, 175, 150

100 11 4 48 4:59

Hybrid
T1-compensated

1800, 850, 550 150, 1025, 1350, 1400 12 4 64 5:00

Note: When LD/PLD combinations are repeated multiple times, it means these timings are effectively acquired with more averages. For the sequential
multi-LD/PLD protocols, each LD is used with the corresponding PLD in the ordered list, i.e., LD1 with PLD1. For the hybrid protocols, the same three encoded
LDs are used with each final PLD. Protocol optimization settings: maximum scan duration= 5 min, T1b = 1.65 s, minimum PLD= 100 ms, minimum/maximum
LD= 50/2300 ms, 500 ms of non-ASL time (readout, etc), minimum variable TR. The ATT probability was uniform across each ATT range and the ATT
distribution was sampled every 10 ms. A linearly decreasing ATT probability extended 300 ms either side of the ATT range to avoid the measurement
uncertainty increasing at the ATT distribution edges. Originally optimized for a 75 s scan time to allow time for four readout segments within a 5-min scan.
Abbreviations: NAcq = total number of acquisitions (one acquisition is one label/control/encoded image); NAve, number of averages; NSeg =number of readout
segments; NT, number of timepoints.

2.3.3 Time-encoded/sequential hybrid

A more flexible alternative to pure time-encoding is to
sequentially repeat a time-encoded protocol with differ-
ent final PLDs.27 This hybrid protocol (Figure 3C) enables
the use of longer LDs than pure time-encoding because a
4 × 3 Hadamard encoding can be used (smaller than the
more typically used 8 × 7 or 12 × 11 encodings), while suf-
ficient temporal information for accurate measurement is
generated from both the time-decoding and multiple PLDs
(the number of decoded timepoints being three times the
number of final PLDs for a 4 × 3 encoding). This approach
has been shown to provide more precise CBF measure-
ments than other multi-timepoint protocols27 and the use
of a smaller time-encoding matrix reduces motion sensitiv-
ity. To further minimize motion sensitivity, the sequence

should ideally loop over the encodings, then PLDs, then
averages, but a standard time-encoded scan can also sim-
ply be repeated with different PLDs.

2.3.4 Look-Locker

Multiple timepoints can also be obtained using a
Look-Locker readout,28,53,74 where multiple images are
acquired with different PLDs after a single ASL prepara-
tion. This can be an attractive approach because the time
taken to acquire all the PLDs can be reduced compared
to other multi-timepoint protocols, making it more robust
to subject motion and more suitable for measuring short
time-scale perfusion changes. Look-Locker readouts can
also be combined with time-encoded PCASL to generate
very high temporal resolution data.75
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However, there are several limitations of using
Look-Locker ASL. First, labeled blood within the imaging
volume is attenuated by repeated readout excitations, so
low excitation flip angles are necessary to preserve signal
for later timepoints,76,77 which reduces SNR. Second, this
attenuation must be accounted for during quantification,
which is made difficult due to uncertainty in how much of
the bolus was attenuated by each excitation.28,74,78 Third,
background signal can typically only be suppressed at
a single time point, so, as with multi-slice readouts, the
effectiveness of BS is reduced (see below). Finally, brain
coverage is limited by the time interval between two con-
secutive measurements (typically five to seven slices are
compatible with a 250–300 ms temporal resolution),79,80

although simultaneous multi-slice (SMS) can be used to
increase coverage.75,81,82 Due to its reduced SNR and the
increased difficulty in its use, Look-Locker ASL is not rec-
ommended for routine use if one of the above alternatives
is available.

2.3.5 MR fingerprinting ASL

Multi-timepoint data can also be acquired using an MR fin-
gerprinting approach.83–86 In ASL fingerprinting, a series
of images is acquired with varied label/control PCASL
preparations. Unlike other ASL protocols, the image vol-
ume is not saturated between acquisitions, so each image
contains contributions from a number of previous label/-
control preparations. Although an almost zero PLD is
typically used, a diverse range of temporal information is
encoded by pseudo-randomly varying the LD and label/-
control order. MRF ASL is still considered to be an experi-
mental method; further details can be found in.87

2.3.6 Optimal timings

The choice of LDs, PLDs, and number of timepoints
acquired directly affects the precision and bias of the
parameters estimated (typically CBF and ATT as a mini-
mum). In the literature, protocol timings are often chosen
empirically. However, timings which maximize measure-
ment precision may also be chosen objectively using the
Cramér-Rao lower bound (CRLB), a statistical expression
that describes the lower bound of the estimated parameter
variances.88

The use of the CRLB for finding optimal
multi-timepoint protocol timings has been widely demon-
strated for CBF and ATT estimation,27,28,62,74,83,89–98 and
we recommend that CRLB optimized protocol timings are

used for quantitative imaging, when possible, to maximize
measurement precision and scan efficiency.

While measurement precision can typically be maxi-
mized with many single-average unique timepoints,62 it is
often simpler to design an acquisition with a fixed num-
ber of unique timepoints and repeat this set as needed to
achieve sufficient SNR. In practice four to seven unique
timepoints is generally sufficient to estimate CBF and
ATT and can be designed to offer superior precision to a
single-PLD acquisition.27

Timings, optimized for both CBF and ATT precision,
for several classes of PCASL protocol at 3T, covering typi-
cal ranges of ATT (0.5–1.8 s and 0.5–2.5 s) and constrained
to a 5-min scan duration, are provided in Table 2 with
the simulated measurement errors for these protocols,
and two single-PLD protocols for comparison, shown in
Figure 5. These multi-timepoint protocol timings were
generated using freely available open-source software
(https://github.com/physimals/oxasl_optpcasl) which
readers are encouraged to use if their scan requirements
differ substantially from those provided, for example,
different field strength (affecting T1b) or incompatible
readout segmentation. Note, improved multi-timepoint
CBF accuracy can be achieved by optimizing the protocol
timings for just CBF precision.62

As can be seen in Figure 5, the hybrid protocols have
the lowest multi-timepoint simulation CBF errors while
having similar ATT errors to the time-encoded protocols.
The sequential protocols have similar simulation CBF
errors to the time-encoded protocols but generally have
larger ATT errors. Compared to the single-PLD protocols,
which do not provide estimates of ATT, the hybrid pro-
tocols achieve lower CBF errors for the majority of the
ATT ranges (except for the largest ATTs, which are close in
value to the single-PLD value). Although these simulations
demonstrate that some multi-timepoint protocols can the-
oretically provide lower CBF errors than single-PLD ASL,
it is currently unclear whether this benefit outweighs the
increased postprocessing complexity in clinical settings,
unless ATT maps are also required.

While it is possible to measure perfusion when ATTs
are longer than 2.5 s, T1-relaxation of the label means that
the measurements will have low precision within such
short scan durations; longer scan durations or the use of
velocity-selective ASL22 may be more appropriate in such
cases. The use of longer LDs than those used here (max
LD= 2.3 s) can improve CBF precision,27 but long LDs
can also increase the influence of tissue T1 on the sig-
nal, potentially increasing measurement bias unless tissue
T1 is separately measured and included during perfusion
quantification (see Section 2.7.4).
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F I G U R E 5 Monte Carlo simulation CBF and ATT quantification errors for the protocols shown in Table 2 and two single-PLD protocols.
(A) The quantification errors for the short ATT range, 0.5–1.8 s (single-PLD: LD= 1800 ms, PLD= 1800 ms, NAve/NSeq = 37, scan duration
5:03 min); (B) the quantification errors for the extended ATT range, 0.5–2.5 s (single-PLD: LD= 1800 ms, PLD= 2500 ms, NAve/NSeq = 31, scan
duration 4:58 min). The RMSE was used as a general measure of error because it is a combination of both measurement bias and SD.62 The
data were simulated and fit using the PCASL signal model in Eq. (3) with 𝛼 = 0.85, 𝛼BS = 1, M0a = 1, CBF= 50 mL/100 g/min, T1b = 1.65 s.
White Gaussian noise was added to 2000 copies of each simulated control/label/encoded “image” before subtraction/decoding. The noise SD
was M0a ⋅ 1.4 ⋅ 10−3, equivalent to a noise SD of 38% of the ASL signal or an SNR of 2.63 for a single control-label difference image with
LD=PLD= 1.8 s, T1b = 1.65 s, and ATT<1.8 s. Model fitting used a non-linear least squares approach similar to that described in Ref 62.

2.4 Background suppression

BS is used to improve the SNR of ASL perfusion
scans.99–103 Improvements in temporal SNR of 2-3x can
be expected,103–105 although the effectiveness of BS with
2D multi-slice and Look-Locker acquisitions is reduced
because background signal is typically only optimal for the
first PLD.

In multi-timepoint acquisitions, the time between
the presaturation and readout often varies with each
LD/PLD pair for time-efficiency, for example, when
using minimum variable TR. Because the use of iden-
tical inversion BS timings for all acquired timepoints
results in sub-optimal BS, we recommend that the
BS inversion timings are optimized for each TR in a
multi-timepoint ASL sequence. These timings are ideally
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calculated on-the-fly so that users can flexibly change scan
timings.100,101

With PCASL, the BS inversion pulses are often placed
during the PLD. However, this is often sub-optimal,
particularly for long LD/short PLD combinations, for
example, time-encoding. We recommend BS inversion
pulses are interleaved with PCASL labeling when neces-
sary to improve BS performance.25,27,30,101,106,107 When this
occurs, the following adjustments are required: (1) the
label/control condition for the remaining labeling period
should be switched after each interleaved pulse is applied;
(2) the BS inversion pulses should be slab-selective with
the inferior edge parallel to and coincident with the PCASL
labeling plane to invert already labeled/controlled blood
while avoiding perturbing upstream arterial spins. For
simplicity, the perfusion signal can be scaled by the net
inversion efficiency of the BS inversion pulses in the same
way as when they are not interleaved.108

2.5 Vessel suppression

At short PLDs, some labeled blood is likely to remain in the
arteries, even among young healthy participants. Intravas-
cular ASL signal can lead to local overestimation of perfu-
sion and underestimation of ATT.30,109 For accurate quan-
tification of perfusion, intravascular ASL signal should be
either modeled or suppressed. In general, we recommend
modeling intravascular signals rather than suppressing
them (see Section 2.7.1), because they can contain clini-
cally valuable information which vessel suppression can
remove110 and vessel suppression typically reduces SNR
due to T2 or T2* decay. However, whether including addi-
tional intravascular model parameters leads to more or
less perfusion measurement uncertainty than using ves-
sel suppression is an unanswered question that requires
further research. It is important to note that vessel suppres-
sion is commonly applied along a single flow-direction,
leading to imperfect suppression.45 Nonetheless, there
may be cases when vessel suppression is preferred, such
as in tumor imaging,111 making it a valuable option for
multi-timepoint ASL.

While the additional ASL signal attenuation from ves-
sel suppression can be modeled, it is simpler and more
robust to apply the same vessel suppression during acquisi-
tion of the calibration image, thus canceling out this effect
after division by the reference image.30

2.6 Readout approaches

Segmented 3D readouts, such as 3D GRASE100,112,113 and
3D RARE stack-of-spirals,103,105 along with judicious use

of parallel imaging are recommended for ASL, when avail-
able, due to their compatibility with BS, identical PLD
across slices, and high SNR.20 With multi-timepoint ASL,
the level of readout segmentation possible may be reduced
for short scan durations due to the competing use of scan
time for acquiring segments and temporal information. A
rule of thumb is to only reduce the number of segments if
the readout duration can be kept to <300 ms to avoid high
levels of through-plane blurring,20 but this will depend on
the effective spatial resolution required.

Extending from the 2015 consensus paper, we recom-
mend that the sequence first loops over the ASL condition
(label/control conditions or time-encodings), followed by
image segments to achieve the most accurate label/control
subtractions.20 This should then be followed by looping
over LD/PLD adjustments, with averages in the outermost
loop.

In some applications, including those where subject
motion might be an issue, the use of single-shot 3D
acquisitions may be desirable. Recent work has shown
that single-shot readout durations can be reduced using
in-plane partial Fourier combined with acceleration in the
slice direction,114 acceleration along both phase encod-
ing directions115 or employing 3D acceleration.116 Com-
pressed sensing can also be used to exploit the tempo-
ral signal redundancy in multi-timepoint ASL by varying
the undersampling pattern across timepoints, enabling
increased acceleration factors.66

2D single-shot readouts (e.g., EPI and spiral) are an
adequate alternative when an optimized 3D readout is not
available, although BS effectiveness is reduced and the
PLD varies across slices, leading to slice-dependent CBF
and ATT accuracy.62 SMS can increase the number of slices
to achieve whole brain coverage,117,118 improve BS119 and
reduce PLD differences across slices. However, the perfor-
mance of postprocessing motion correction strategies can
be compromised.120

2.7 Postprocessing methods

Whilst it is important for quality assurance to examine the
ASL difference (control-label) images, we recommend that
multi-timepoint ASL is processed using a quantification
model to arrive at estimates of perfusion and ATT as a min-
imum. A major benefit of multi-timepoint ASL is being
able to account for the effect of variable ATT on quanti-
tative perfusion values and visualize the pattern of ATT
itself. Since the tracer kinetics of the ASL label results in
a signal model that is non-linear in ATT, it is not possible
to use a single formula to compute perfusion, as was pro-
vided in the 2015 consensus paper. Instead, it is necessary
to perform some form of algorithmic analysis. Although
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this is more complex to implement, various existing algo-
rithms and software tools are now readily available for
this task (see: OSIPI (Open Science Initiative for Perfusion
Imaging) pipeline inventory).121

2.7.1 Quantification model

The General Kinetic Model (GKM) is the most univer-
sal and widely used signal model for ASL. It was out-
lined in detail by Buxton et al.29 following principles
used in the early ASL publications52,122–124 and based on
indicator-dilution theory.125 By describing the delivery of
labeled blood water to a voxel via an “arterial input func-
tion” and the subsequent behavior of that labeled blood
water after arrival, via the “residue function,” the GKM
provides a flexible way to incorporate a range of effects on
the ASL signal.

In the 2015 consensus paper, several assumptions were
made to derive a simplified model for perfusion quantifi-
cation from single-PLD ASL based on the GKM. This was
chosen as it can be used robustly in a wide range of circum-
stances without the need for more than a few key parame-
ters to be set. We recommend that, in general, an extended
version of this model is used for multi-timepoint data that
incorporates the effects of variable ATT, but otherwise
retains the other assumptions. This can be described by the
following equations for PCASL and PASL:

PCASL:

= 0 0 < LD + PLD < ATT

SIcontrol − SIlabel =
2 ⋅ 𝛼 ⋅ 𝛼BS ⋅ T1b ⋅M0a ⋅ CBF ⋅ e−

ATT
T1b ⋅

(
1 − e−

LD+PLD−ATT
T1b

)

6000
ATT < LD + PLD < ATT + LD

=
2 ⋅ 𝛼 ⋅ 𝛼BS ⋅ T1b ⋅M0a ⋅ CBF ⋅ e−

PLD
T1b ⋅

(
1 − e−

LD
T1b

)

6000
ATT < PLD

(2)

QUIPSS II/Q2TIPS PASL:

= 0 0 < TI < ATT

SIcontrol − SIlabel =
2 ⋅ 𝛼 ⋅ 𝛼BS ⋅M0a ⋅ CBF ⋅ e−

TI
T1b ⋅ (TI − ATT)

6000
ATT < TI < ATT + TI1

= 2 ⋅ 𝛼 ⋅ 𝛼BS ⋅M0a ⋅ CBF ⋅ e−
TI

T1b ⋅ TI1

6000
ATT + TI1 < TI

(3)

where SIcontrol and SIlabel are respectively the signal inten-
sities in a single pair of control/label images acquired
with the same LD and PLD, α is the labeling efficiency,
αBS is the total BS inversion efficiency, T1b is the longi-
tudinal relaxation time of arterial blood in seconds, and
M0a is the equilibrium magnetization of arterial blood,
calculated as M0a = SIPD∕𝜆,126–128 where SIPD is a proton
density weighted image and λ is the tissue/blood partition
coefficient (see Ref 128 for a detailed discussion of M0a
calibration approaches). The factor of 6000 converts the
units for CBF from mL/g/s to mL/100 g/min. Note that for
2D multi-slice imaging, the PLD value should be adjusted
for each slice to account for the time delay between slice
acquisitions.

The major assumptions of this model are consistent
with the recommended single-PLD formula, that is, (1)
there is no outflow of labeled blood water and (2) the relax-
ation of labeled spins is governed by blood T1 (or equiva-
lently that blood T1 and tissue T1 are equal).20 The second
assumption may introduce appreciable errors where dif-
ferences in T1 between blood and tissue are large (e.g., in
white matter [WM] and tumors) or when measurement
times (LD+PLD) are long.129 More complex models and
separate measurements may be used to mitigate this, as
discussed below.

When vessel suppression has not been used, we recom-
mend that an extra intravascular component is included in
the quantification model. The models in equations Eqs. (2)
and (3) assume that all labeled blood water has arrived
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in the capillary bed at the PLD, that is, it is a result of
perfusive delivery to the tissue. Signal contributions arise
from labeled blood water that remains in arterial vessels
at the time of imaging: the so called “intravascular sig-
nal.” For the purposes of CBF quantification, this signal
is regarded as artifactual, giving rise to overestimation of
perfusion in voxels displaying intravascular contamination
as the labeled blood water in the vessels is destined for
delivery to tissue in other voxels via downstream capillary
vessels. Since this signal is typically associated with larger
arterial vessels with high flow speed compared to the rate
of water exchange across the vessel walls, we recommend
that this macrovascular component is modeled with the
same form as the arterial input function.45 Using similar
assumptions as above, this gives rise to the equation:

PCASL:

0 0 < LD + PLD < aBAT

ΔMart =2 ⋅ 𝛼 ⋅ 𝛼BS ⋅M0b ⋅ aBV ⋅ e−
aBAT
T1b aBAT < LD + PLD < aBAT + LD

0 aBAT < PLD

(4)

QUIPSS II/Q2TIPS PASL:

0 0 < TI < aBAT

ΔMart =2 ⋅ 𝛼 ⋅ 𝛼BS ⋅M0b ⋅ aBV ⋅ e−
TI

T1b aBAT < TI < aBAT + TI1

0 aBAT + TI1 < TI

(5)

where ΔMart is the macrovascular difference signal,
aBV is the arterial blood volume, the fraction of the voxel
occupied by the arterial vessel, aBAT is the arterial bolus
arrival time, describing the first arrival of the labeled
blood water in the voxel within the arterial vessel, and the
other parameters are as defined previously. Notably, for
PLD> aBAT (PCASL) or TI> aBAT (PASL) no macrovas-
cular signal is present, that is, this defines the conditions
under which a vascular artifact would not be seen in the
data.

The macrovascular signal contribution occurs in addi-
tion to the “tissue” component in equations Eqs. (2) and
(3); hence, it is not dependent directly upon perfusion
within that voxel. When including the macrovascular com-
ponent, we can represent the right-hand side of Eqs. (2)
and (3) as ΔMtiss (i.e., the tissue perfusion signal compo-
nent), and we have the full quantification model as

SIcontrol − SIlabel = ΔMtiss + ΔMart. (6)

2.7.2 Model fitting

For multi-timepoint ASL, data at different timepoints
need to be combined and multiple parameters estimated.
Various methods have been used to estimate kinetic
model parameters in the literature, but the majority can
be viewed as some form of nonlinear regression. There
are examples of semi-parametric approaches being used
to estimate a surrogate of the ATT from features of the
multi-timepoint time course and using this ATT surrogate
in the calculation of CBF.30,53,130 Alternatively, the GKM
may be fit directly to the data for CBF and ATT using
a nonlinear model fitting algorithm such as non-linear
least squares29 or Bayesian inference.131 The advantage of
a full model-based fitting is the ability to flexibly extend
the model and fit more parameters, for example, the

macrovascular component, where the data allows. There
are few studies directly comparing different ASL anal-
ysis algorithms,39,132 although the Open Science Initia-
tive for Perfusion Imaging has developed inventories of
ASL software tools121 and challenges133 to make system-
atic comparisons (www.osipi.org). There is currently no
strong evidence to favor one algorithm over another in
terms of accuracy, although features, for example, ability to
model effects such as macrovascular contamination, spa-
tial regularization, or uncertainty estimation might favor
particular algorithms in specific cases.

Kinetic model analysis has been combined with the
image reconstruction process to enable greater levels of
acquisition acceleration by utilizing additional temporal
model based sparsity.66 In contrast to non-linear regres-
sion algorithms, MRF ASL has tended to employ dictio-
nary algorithms (based on those used in the early MR
fingerprinting literature).85,86 These are still based on a
kinetic model description of the signal, but precompute
various examples of the timecourse corresponding to the
acquisition scheme used and find the closest match to the
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data. These algorithms can offer fast processing and robust
performance, especially when a more complex model is
adopted, but can suffer from limitations due to the size of
the precomputed dictionary and only being able to select
from a discretized set of the parameter space. There are a
growing number of examples of machine and deep learn-
ing analyses for MRI data, including ASL.83,134–136 For the
most part these currently seek to learn either an exist-
ing kinetic model-based analysis or the relationship to
another perfusion imaging measure. Such methods can
offer fast analysis and robust solutions, but currently need
to be trained for a specific acquisition protocol and do not
generalize readily.

2.7.3 Variation in blood T1

Blood T1 has a global scaling effect on the estimated per-
fusion and its value can be fixed according to literature
values, for example, 1650 ms for 3T.137 Experimental mea-
surement of subject-specific blood T1, either directly138–141

or using non-imaging parameters with a physiological
model,137,142–144 can also be considered when blood T1
deviates significantly from the normal range, such as in
anemia145 or gas challenges.146 The value of obtaining per
subject measures of blood T1 will depend on the applica-
tion, but there is some evidence that the reduction in per-
fusion bias from spending some of the available scan time
measuring blood T1 might outweigh the loss in precision
for the ASL scan in terms of overall accuracy.147

2.7.4 Variation in tissue T1

More complex models can mitigate the assumption that
the relaxation of the labeled spins is entirely governed by
blood T1, accounting for the time the labeled blood water
spends in the tissue. This is particularly important for
non-cortical brain regions with shorter T1 values such as
WM, deep gray matter (GM) structures with high iron con-
tent such as the pallidum and putamen, and in tumors or
other pathology where T1 may be shortened.148 In these sit-
uations, the single-compartment model of Buxton et al.29

can be used with independent values for blood and tissue
T1, which can either be set using tissue specific literature
values149,150 or measured using a separate scan. In cases
where the tissue T1 does not deviate greatly from typical
values, it is unclear if the reduced perfusion bias from sep-
arately measuring tissue T1 outweighs the loss in perfusion
precision due to spending less of the available scan time on
the ASL acquisition.

Although the tissue T1 can be estimated from the
ASL data itself during the quantification process (i.e.

simultaneously with CBF and ATT),63 this decreases the
precision and repeatability of the perfusion measure-
ments, outweighing the benefits of reduced measurement
bias for typical spatial resolutions and scan times.89 Some
ASL techniques,65 including fingerprinting,84–86,134,136 use
a saturation-recovery approach to provide another source
of tissue T1 information in the ASL data that is not coupled
to the perfusion signal; however, this generally precludes
the use of efficient BS.

Use of the model with separate blood and tissue T1
introduces an additional assumption that labeled blood
water exchanges instantaneously with tissue water as soon
as it enters the tissue voxel (i.e., when LD+PLD>ATT).
In practice, labeled spins will remain in the blood com-
partment for some time prior to exchange. More complex
two-compartment models incorporating exchange time or
permeability of the vessel wall to water can mitigate this
assumption.129,151 However, knowledge of water exchange
is then needed which is challenging and time-consuming
to measure accurately.152–154

2.7.5 Bolus dispersion

In the standard ASL kinetic model, labeled blood moves
downstream inside arteries under the assumption of a uni-
form velocity profile (plug flow). In reality, the bolus of
labeled blood water may be subject to intravascular dis-
persion. Dispersion affects the temporal features of the
intravascular ASL signal and consequently the estimated
perfusion value through changes in the form of the arte-
rial input function. In a single-PLD ASL experiment, it is
not possible to reconcile these issues and, therefore, disper-
sion contributes to errors in perfusion estimation. Char-
acterizing ASL dispersion itself may be of interest since
the process relates to cardiovascular physiology. Patholog-
ical changes to the composition of arteries can increase
arterial stiffness, altering the degree of ASL bolus dis-
persion.47 Similarly, narrowing of the arterial lumen can
alter the fluid mechanics inside the conduit ASL vessel.155

However, few studies have investigated ASL dispersion in
relation to the underlying physiological drivers.

More advanced models have been used to characterize
dispersion, such as modeling dispersion using a vascular
transport kernel47,153–157 or using typical intravascular flow
velocity characteristics to describe the expected form of
the arterial input.158 Multi-timepoint measurements offer
the possibility to detect variation in the signal due to dis-
persion and attempt to correct for it by inclusion of fur-
ther dispersion parameters in the model fitting, potentially
yielding further hemodynamic information in the process.
The effects of dispersion are most noticeable on signal
from arterial vessels and this has been used to characterize
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dispersion in ASL using angiographic readouts.47,159,160

The effects of dispersion on perfusion estimates can be
substantial,160–162 but can be hard to detect in the signal
time course because dispersion effects can appear simi-
lar to variations in other model parameters. Consequently,
fitting dispersion parameters accurately from ASL tissue
signal is challenging unless high SNR and high temporal
resolution data is available.160

The most widely used model of dispersion thus far
is the gamma vascular transport kernel,47 which can be
convolved with the above models. This provides a good
fit to ASL data and is relatively mathematically simple,
adding only two additional model parameters. To avoid
the risk of overfitting when implemented in a model fit-
ting algorithm, the dispersion parameters should be con-
strained to a realistic range, e.g., using a Bayesian prior, or
fixed to literature values; for example, Ref 47 found values
for the gamma vascular transport function of s∼ 0.5 and
p∼ 0.1 in major arteries. Where a macrovascular compo-
nent is present and included in the model, this may also
be used to simultaneously estimate appropriate dispersion
parameters for the dataset.

2.7.6 Partial volume effects

Differences in perfusion demands between tissues, com-
bined with the low spatial resolution of ASL images rel-
ative to anatomical tissue variation, leads to a partial
volume effect (PVE): the voxelwise measured CBF is a
tissue-weighted average measure.46 Correcting for PVE
is especially relevant in studies of aging and dementia
because PVE is exacerbated by atrophy. Algorithms that
correct PVE (PVEc) typically use PV information derived
from a high-resolution anatomical scan.31,163 Given that
this scan is already routinely acquired in imaging stud-
ies, we encourage PVEc to be performed as an additional
analysis, especially for clinical studies and studies where
structural and hemodynamic changes may co-occur.

Since each tissue compartment in the brain has dif-
ferent perfusion kinetics (WM typically has longer ATTs
than GM), multi-timepoint ASL is particularly suitable
for PVEc since it provides extra information for a PVEc
algorithm to separate different tissue contributions.163

PVEc with multi-timepoint ASL not only provides separate
estimates of GM and WM perfusion but also ATT for both
tissue components.

2.7.7 Motion correction

Subtraction of label/control images is an essential step in
ASL postprocessing164 but makes ASL especially sensitive

to motion. Subject motion should, therefore, be mini-
mized as much as possible, which is typically achieved
with foam pads. While BS reduces the impacts of motion,
in general, we recommend the use of motion correction
as another important strategy. This can take the form
of prospective motion correction,165,166 motion correction
during image reconstruction,167–170 or image-based reg-
istration during postprocessing. Motion-correction of the
unsubtracted image series using rigid-body transforma-
tions during postprocessing is most commonly used due to
its wide availability. However, this type of motion correc-
tion can be challenging for data with efficient BS because
there is little static tissue signal available.

It should be noted that, for multi-timepoint data,
the effectiveness of BS can differ across the different
PLDs, thereby leading to varying image intensities and
contrasts of the unsubtracted static tissue across time-
points. This can lead to minor artifactual motion estima-
tions across timepoints when using conventional image
similarity-based motion correction algorithms,171 in a sim-
ilar way to the varying image intensities of label and
control images.172 Additional subtraction artifacts and
challenges can also arise for motion correction when
using simultaneous multi-slice readouts due to the abrupt
changes in image intensities across slices.120

2.8 Multi-timepoint ASL in application

2.8.1 Acquisition duration

As noted by the 2015 consensus, since the ASL perfu-
sion signal is small, ASL relies on averaging to achieve
sufficient SNR. For multi-timepoint ASL, as a mini-
mum, a∼2-min protocol including 5 different LD/PLD
combinations may be sufficient to acquire quantitative
parameter estimates. However, in general, a protocol
of minimum∼4 min is recommended for quantitative
multi-timepoint ASL at 3T with the recommended spatial
resolution (3–4 mm in-plane, 4–8 mm through-plane)20

when reliable parameter estimates are required at an indi-
vidual level.

2.8.2 Quality assurance

In addition to the quality assurance steps recommended
in the 2015 consensus20 (briefly summarized below for
completeness), we also advise the following two steps for
multi-timepoint ASL data:

1. Check the temporal dynamics. Scrolling through the
different ASL timepoints is the most direct method
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to identify transitory artifacts or unexpected dynamics
(such as arteriovenous malformations [AVMs]), which
may be less clear in the final CBF and ATT maps. This
can be achieved by first averaging the repeated acqui-
sitions at each timepoint after the control-label sub-
traction/decoding, then ordering them with increas-
ing TI (LD+PLD). Inspecting the individual difference
images can be a useful follow-up step to check the pro-
portion of images at a given timepoint affected. Note,
if both the LDs and PLDs are varied, it may be more
complicated to manually interpret the signal dynamics.

2. Compare the quantified CBF and ATT maps. It is pos-
sible that regions that have both low CBF and very long
ATTs (where the ATTs are equal to or greater than the
longest PLDs used) may in fact be well perfused, but the
longest PLDs used were too short to capture the arrival
of the ASL label.

The summarized 2015 consensus quality assurance
recommendations (see20 for further details):

1. For PCASL scans, look for areas of low labeling effi-
ciency.

2. Note the overall GM perfusion value.
3. Check for motion artifacts.
4. Look for intravascular artifacts.
5. Check the border-zone (watershed) regions for artifac-

tually low perfusion which may be due to long ATTs
(see new QA steps above).

2.8.3 WM perfusion

Measurement of WM perfusion, and hence detection of
WM perfusion abnormalities, is challenging due to low
SNR caused by the lower blood flow and longer ATT
of WM compared to GM.90,173–177 Partial voluming with
GM may also mask WM perfusion signals in GM/WM
border regions.175 The earlier timepoints often used by
multi-timepoint ASL strategies may not contribute to
greater WM perfusion SNR when compared to the use of
a single long PLD. Hence, where WM perfusion is specif-
ically of interest, it may be beneficial to design the time-
points used to include longer ATT or specifically only for
a range of ATT seen in WM. Acquisition at a lower spa-
tial resolution,177 or analysis which combines voxels into
lower resolution elements, can increase SNR and PVEc can
be used to separate WM signals.

3 CLINICAL APPLICATIONS

In this section, we examine examples where
multi-timepoint ASL may offer advantages over the
existing consensus single-PLD approach.

3.1 Cerebrovascular reactivity

CVR reflects the capacity of blood vessels to alter their
caliber and thus modify CBF in response to a vasoactive
stimulus, e.g., acetazolamide, CO2, or breath-hold.178–180

This parameter has been shown to be impaired in patholo-
gies where the cerebrovasculature is compromised, such as
stroke,181,182 small vessel disease,183,184 glioma,185–187 and
neurodegenerative diseases.188–191

ASL has been increasingly used to map CVR due to
its ability to provide non-invasive and quantitative mea-
sures of CBF changes, compared to indirect or invasive
methods such as BOLD-FMRI or PET. However, the appli-
cation of vasoactive stimuli can lead to changes in ATT (see
Figure 6),192,193 potentially compromising CVR measure-
ments when single-PLD ASL is used. Due to its robustness
to changes in ATT, multi-timepoint ASL CVR measure-
ments may, therefore, be more accurate than single-PLD
ASL.11,194 However, the short duration of breath-holds can
make the use of multi-timepoint ASL difficult for this type
of stimulus.180

3.2 Steno-occlusive disease

In steno-occlusive diseases, significant transit delay can
occur distal to the stenosis, resulting in elongated ATTs
and associated transit artifacts when using single-PLD
ASL. As the degree of stenosis may vary with disease
severity and with underlying etiology, simply choosing a
single longer PLD may not be the best approach, mak-
ing multi-PLD ASL highly relevant for these patients.
Multi-PLD ASL has been utilized in steno-occlusive dis-
ease patients in both research and clinical settings, pri-
marily in moyamoya disease195,196 but also in intracranial
atherosclerotic disease.197 In one cohort of patients with
moyamoya, CBF derived using multi-PLD ASL showed a
larger effect size than CBF from single-PLD ASL when
comparing pre- and post-revascularization data.198 In
the same study, the additional ATT information from
multi-PLD ASL was shown to be correlated with dynamic
susceptibility contrast-based time-to-maximum values.198

These data show the promise of multi-PLD ASL to provide
similar information without the need for contrast injec-
tion. Another study in moyamoya patients demonstrated
that hemodynamic parameters derived from multi-PLD
ASL exhibited better agreement with analogous measures
derived using oxygen-15 positron emission tomography
than single-PLD ASL in both diseased and healthy brain
hemispheres.199 Together, these results support the use of
multi-PLD over single-PLD ASL in patients with arterial
steno-occlusive diseases.
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F I G U R E 6 Brain-wide ATT
changes before and after Acetazolamide
administration. Note that, although
both cases have similar watershed
borders, the ATT is generally shorter
after acetazolamide (B) than before (A).
Figure reproduced from Ref 11 with
permission.

3.3 Arteriovenous malformations
and fistulas

Cerebral AVMs and fistulas characteristically demonstrate
abnormal arteriovenous connections (so-called shunts)
that allow the ASL signal to bypass the capillary network,
resulting in early venous arrival. This unique property of
arteriovenous shunts (AVS) typically produces easily iden-
tifiable hyperintense venous ASL signal,122,200,201 although
the degree of conspicuity is dependent on the LD and PLD.

While single-PLD ASL data, acquired using the 2015
consensus parameters, are often useful for assessing AVS,
sensitivity may be degraded by several factors. First,
single-PLD methods may miss or sub-optimally character-
ize lesions if shunt flow is too fast (resulting in complete
venous clearance) or too slow (resulting in insufficient
accumulation). Second, ambiguity will arise when it is
unclear if the hyperintense ASL signal truly localizes to a
vein versus a non-venous structure (e.g., a nearby artery or
abnormal vascular tissue).

The qualitative use of multi-timepoint ASL addresses
both issues. Short-PLD images improve assessment of
high-flow shunts, whereas long-PLD images improve
assessment of low-flow shunts. Since AVS are quite
heterogeneous across the patient population, use of
multi-timepoint ASL could effectively widen the operating
range for ASL. Additionally, multi-timepoint ASL could
allow a more comprehensive assessment of shunt flow by
permitting a dynamic evaluation that would help spatially

localize arterial supply and venous drainage. This type of
evaluation is particularly useful when following AVS over
time to determine progression and/or response to therapy.

3.4 Aging and neurodegenerative
disease

ATTs have been shown to increase with age.130,202 There-
fore, single-PLD ASL may not be well-suited for quan-
tifying CBF in aging populations due to the large vari-
ability in the appropriate single-PLD. In these cases,
multi-timepoint ASL may be appropriate to enable more
accurate quantification of CBF in older adults and has
recently been included in large consortium studies involv-
ing aging populations, including the Human Connectome
Project-Aging,203 UK Biobank, and the Alzheimer’s Dis-
ease Neuroimaging Initiative.204 Recent work has demon-
strated that CBF measured using multi-timepoint ASL
exhibited better agreement with CBF from 15O-PET and
CT than single-PLD ASL in patients with pathologically
long ATTs,6,195 and that it reduces the variability of CBF
measurements in the frontal, parietal, and occipital brain
regions in older adults.202 Multi-timepoint ASL has also
detected unique patterns in regional CBF in individuals
who exhibited variable longitudinal changes in cognitive
function.205

In addition to aiding in more accurate quantification
of CBF, recent studies suggest that ATT can be used as a
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F I G U R E 7 An example time-encoded multi-timepoint PCASL acquisition in a low-grade diffuse glioma (oligodendroglioma, WHO
grade 2). Top row: The extent of the tumor can be seen in the T2-FLAIR (hyperintense region). The T1 +Gd shows no enhancement. The
calculated PCASL CBF and ATT maps indicate an area of high perfusion with short arrival time within the tumor region, in part due to large
intravascular signal contributions present in these data which were not modeled here. This is consistent with the finding that
oligodendroglioma tend to be highly perfused and have high blood volume with irregular, although non-leaky, vasculature. Bottom row:
perfusion-weighted images at each of the acquired PLDs.

cerebrovascular biomarker in aging and neurodegenera-
tive diseases. One study showed that ATT was increased
in several regions of interest (ROIs) in patients with
Alzheimer’s disease compared to healthy controls; and
that this ATT increase was associated with cognitive per-
formance.206 Parkinson’s dementia207 and multiple scle-
rosis208 have also shown associations between ATT and
cognitive decline. ATT proxies, such as FEAST-ATT209 and
the spatial coefficient of variation (sCoV),210 have also
been used as potential biomarkers in neurodegenerative
disease.

3.5 Cancer

ASL is increasingly used clinically to aid the initial diag-
nosis of brain tumors and to monitor post-treatment to dif-
ferentiate tumor recurrence from treatment effects.211,212

Although multi-timepoint ASL can provide greater CBF
accuracy, brain tumor imaging may mostly benefit from
its ability to characterize the arterial signal component
and aBAT/ATT, due to the common irregular vascula-
ture found with this disease (see Figure 7). For example,
the vascular-weighted signal from early (<500 ms) PASL
TIs have been shown to be superior to longer TIs in
distinguishing between low- and high-grade astrocytoma
and glioblastoma, improving pre-operative grading.213 A
further study demonstrated that multi-timepoint CBF

could distinguish between grade 2, 3, and 4 astrocy-
toma, whereas single-PLD CBF was only able to distin-
guish grade 2 and 4 tumors.214 Another study found that,
although multi-timepoint PASL with and without vas-
cular crushing was not able to distinguish between dif-
ferent pediatric brain tumors (which DSC was able to),
an improved picture was given of the tumor macro- and
microvascular compartments.111 The authors of the latter
study also indicated that specifically in enhancing tumors,
where DSC measurements are affected by leaky vessels,
multi-timepoint ASL can likely improve knowledge on
perfusion due to the ability to model ATT and intravascu-
lar signal. Future studies including multi-timepoint ASL
in oncology are, therefore, warranted to further elucidate
tumor hemodynamics.

4 SUMMARY

ASL is now an established non-invasive technique for
quantitatively imaging cerebral perfusion in both research
and clinical settings. The recommendations provided in
this paper aim to serve as a comprehensive guide for
clinicians and researchers navigating the large array of
options available when pursuing quantitative accuracy or
the estimation of additional hemodynamic measures using
multi-timepoint ASL. By employing a robust, yet relatively
simple, multi-timepoint protocol, in conjunction with
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widely available postprocessing techniques, more accu-
rate and precise measurements of CBF can be achieved
by accounting for variable ATTs and intravascular signal,
as well as providing clinically valuable measurements of
these physiological parameters. These guidelines do not
intend to supersede the recommendations outlined in the
2015 consensus paper; rather, they offer specific guid-
ance for utilizing multi-timepoint ASL methods that are
already accessible to the research and clinical community
through various vendor implementations and software
toolboxes.
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ENDNOTE
i The timing parameters in ASL techniques, specifically
(pseudo-)continuous ASL ((P)CASL) and pulsed ASL (PASL), have
different terminologies. In (P)CASL, the LD and PLD are com-
monly used to describe the protocol timings. The LD represents the
duration of the labeling period and, therefore, the duration of the
labeled blood bolus. The PLD is the time between the end of label-
ing and the image readout. In PASL, the inversion time (TI) is used,
which refers to the time between the labeling pulse and the image
readout. TI includes both the labeled bolus duration (LD) and the
PLD; specifically, TI=LD+PLD, where LD=TI1 and PLD=TI -

TI1 when QUIPSS II21 is used. To provide a more general terminol-
ogy, we can refer to TI as the “inflow time”, with TI=LD+PLD,
in both (P)CASL and PASL, as it represents the total time during
which labeled blood can flow into the imaging region. It should
be noted that the same definition of “inflow time” is also used in
velocity selective ASL (VSASL), as described in the recent VSASL
consensus paper.22
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