107 research outputs found

    Short-range correlations in two-nucleon knockout reactions

    Full text link
    A theory of short-range correlations in two-nucleon removal due to elastic breakup (diffraction dissociation) on a light target is developed. Fingerprints of these correlations will appear in momentum distributions of back-to-back emission of the nucleon pair. Expressions for the momentum distributions are derived and calculations for reactions involving stable and unstable nuclear species are performed. The signature of short-range correlations in other reaction processes is also studied.Comment: Nuclear Physics A, in pres

    Filamentous giant Beggiatoaceae from the Guaymas Basin are capable of both denitrification and dissimilatory nitrate reduction to ammonium

    Get PDF
    Filamentous large sulfur-oxidizing bacteria (FLSB) of the family Beggiatoaceae are globally distributed aquatic bacteria that can control geochemical fluxes from the sediment to the water column through their metabolic activity. FLSB mats from hydrothermal sediments of Guaymas Basin, Mexico, typically have a "fried-egg" appearance, with orange filaments dominating near the center and wider white filaments at the periphery, likely reflecting areas of higher and lower sulfide fluxes, respectively. These FLSB store large quantities of intracellular nitrate that they use to oxidize sulfide. By applying a combination of 15N-labeling techniques and genome sequence analysis, we demonstrate that the white FLSB filaments were capable of reducing their intracellular nitrate stores to both nitrogen gas and ammonium by denitrification and dissimilatory nitrate reduction to ammonium (DNRA), respectively. On the other hand, our combined results show that the orange filaments were primarily capable of DNRA. Microsensor profiles through a laboratory-incubated white FLSB mat revealed a 2- to 3-mm vertical separation between the oxic and sulfidic zones. Denitrification was most intense just below the oxic zone, as shown by the production of nitrous oxide following exposure to acetylene, which blocks nitrous oxide reduction to nitrogen gas. Below this zone, a local pH maximum coincided with sulfide oxidation, consistent with nitrate reduction by DNRA. The balance between internally and externally available electron acceptors (nitrate) and electron donors (reduced sulfur) likely controlled the end product of nitrate reduction both between orange and white FLSB mats and between different spatial and geochemical niches within the white FLSB mat

    Tensor Correlations Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum, ptotp_{tot}. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low ptotp_{tot} and rises to approximately 0.5 at large ptotp_{tot}. This shows the dominance of tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR

    Measurement of the nuclear multiplicity ratio for Ks0K^0_s hadronization at CLAS

    Full text link
    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0K_s^0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy zz transferred to the Ks0K_s^0 and the transverse momentum squared pT2p_{T}^2 of the Ks0K_s^0. We find that the multiplicity ratios for Ks0K^0_s are reduced in the nuclear medium at high zz and low pT2p_{T}^2, with a trend for the Ks0K^0_s transverse momentum to be broadened in the nucleus for large pT2p_{T}^2.Comment: Submitted to Phys. Lett.

    Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π0\pi^0 production

    Get PDF
    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinϕh\sin \phi_h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh\phi_h of the produced neutral pion. The dependence of this amplitude on Bjorken xx and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.Comment: to be submitted PL

    Stellar activity cycles and contribution of the deep layers knowledge

    Full text link
    It is believed that magnetic activity on the Sun and solar-type stars are tightly related to the dynamo process driven by the interaction between rotation, convection, and magnetic field. However, the detailed mechanisms of this process are still incompletely understood. Many questions remain unanswered, e.g.: why some stars are more active than others?; why some stars have a flat activity?; why is there a Maunder minimum?; are all the cycles regular? A large number of prox- ies are typically used to study the magnetic activity of stars as we cannot resolve stellar discs. Recently, it was shown that asteroseismology can also be used to study stellar activity, making it an even more powerful tool. If short cycles are not so un- common, we expect to detect many of them with missions such as CoRoT, Kepler, and possibly the PLATO mission. We will review some of the latest results obtained with spectroscopic measurements. We will show how asteroseismology can help us to better understand the complex process of dynamo and illustrate how the CoRoT and Kepler missions are revolutionizing our knowledge on stellar activity. A new window is being opened over our understanding of the magnetic variability of stars.Comment: 7 pages. To appear in Astrophysics and Space Science Proceedings series of the 20th Stellar pulsation conference held in Granada (Spain) from 6 to 10 September 2011

    Evidence for the Onset of Color Transparency in ρ0\rho^0 Electroproduction off Nuclei

    Get PDF
    We have measured the nuclear transparency of the incoherent diffractive A(e,eρ0)A(e,e'\rho^0) process in 12^{12}C and 56^{56}Fe targets relative to 2^2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced ρ0\rho^0's on a nucleus relative to deuterium, which is sensitive to ρA\rho A interaction, was studied as function of the coherence length (lcl_c), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2Q^2). While the transparency for both 12^{12}C and 56^{56}Fe showed no lcl_c dependence, a significant Q2Q^2 dependence was measured, which is consistent with calculations that included the color transparency effects.Comment: 6 pages and 4 figure
    corecore