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A B S T R A C T   

Migratory birds are particularly susceptible to climate change and habitat loss due to their reliance on a global 
network of ecosystems, with waders and seabirds undergoing significant population decline. The Eurasian 
Curlew (Numenius arquata) is classified as Near Threatened on the IUCN Red List of Threatened Species, but 
breeding populations in Great Britain and the island of Ireland have declined drastically, with the species on the 
brink of local extinction. We present a set of models of the distribution of Curlew sightings between November 
and February in the Great Britain and the island of Ireland over the period 2003 to 2019. Using a model selection 
process (cross-validated lasso regression), we reduce the fairly large set of CORINE satellite land cover classes to 
a much smaller set of explanatory variables which we combine with environmental variables and fit binomial 
Generalized Linear Models to Curlew observation records. This enables us to build up a detailed picture of where 
and when Curlew are sighted between November and February over the 17 years of the study. Reproducibly, 
from November to January between 2003 and 2019, the coastal land cover classes, Estuaries, Intertidal Flats, Salt 
Marshes and Port Areas, feature prominently in the sets of explanatory variables selected by the lasso regression. 
Moreover, this study represents the first regional scale analysis on the impact of landscape and climate features 
on wintering curlew distribution, identifying the importance of landscape factors that warrant further research, 
such as the importance of artificial structures and the importance of February within the migration of the Curlew.   

1. Introduction 

Coastal ecosystems are being increasingly modified, with an esti
mated one billion people expected to live within the lower-elevation 
coastal zone by 2060 (Neumann et al., 2015). Consequently, coastal 
habitats and the species they support are increasingly under threat from 
climate change, habitat loss, and urbanization (Holloway and Field, 
2020; Russo and Cirella, 2021). The recent Intergovernmental Science 
Policy Platform on Biodiversity and Ecosystem Services (IPBES) report 
(Dias et al., 2019) identified that over 1 million species are now 
threatened with extinction, many within decades. Climate change is 

known to exacerbate direct threats from human activities (Munilla et al., 
2007), particularly in coastal ecosystems where the combination of sea- 
level rise and hard-engineering structures causes coastal squeeze, which 
restricts the geographic distribution of habitat specialists causing local 
extinctions and/or trophic cascades (Hughes, 2004). Consequently, with 
climate change and concomitant urbanization leading to species range 
shifts, range constrictions, and an increasing likelihood of local and 
global extinction, it is imperative for biodiversity conservation to better 
understand the drivers of current and past patterns of species distribu
tions to inform mitigation strategies. 

Migratory birds are particularly susceptible due to their reliance on a 
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global network of ecosystems (Van Doren et al., 2021), with waders and 
seabirds undergoing significant population decline (Dias et al., 2019; 
Manton and Angelstam, 2021). Long-distance migrants are of particular 
concern globally, yet 91% are estimated to be inadequately protected 
across their annual cycle (Runge et al., 2014). The Eurasian Curlew 
(Numenius arquata), hereafter Curlew, is classified as Near Threatened 
on the IUCN Red List of Threatened Species (BirdLife International, 
2022), with local populations declining across the world, which is 
having a consequent adverse effect on the global population of Curlew 
(Brown et al., 2015). 

The UK population is estimated to account for between 19 and 27% 
of the global breeding population of Curlew (Brown et al., 2015), yet 
recent population estimates indicate population declines of 60% in 
Scotland, 73% in Wales and 30% in England, between 1995 and 2021 
(Heywood et al., 2023), while in Northern Ireland populations have 
been estimated to have declined by 80% over the same period (Jones 
et al., 2022). In the Republic of Ireland, in the late 1980s there were 
estimated to be approximately 3300–5500 pairs of breeding Curlew; yet 
in 2019 there remained no more than 150 pairs, which equates to a 98% 
decline over the last 30 years (O’Donoghue et al., 2019; Servignat and 
O’Donoghue, 2022). 

Human development and interactions within the coastal zone will 
impinge on many wetlands of international importance. Coastal habitats 
during the wintering months are of vital importance to the global 
network of Curlew as they can support large waterbird populations 
during adverse conditions. Despite this importance, these habitats have 
been declining across Europe since the 1980s (PECBMS, 2020), and in 
the UK and Ireland, since 2000 (Frost et al., 2019; Kennedy et al., 2022). 
Climate may affect such wintering coastal bird populations indirectly via 
changes in food supply (Carroll et al., 2015) and sea level changes. 
Coastal squeeze as a result of increased sea level and shoreline hard
ening may reduce the amount of coastal habitat available, especially at 
periods of high tide. Other direct impacts include extreme weather, 
including flooding events that increase rates of mortality (McDonald 
et al., 2015; Oro, 2014; Sydeman et al., 2015). Such effects will be 
compounded by other drivers including land use along the coast, as well 
as in the marine environment (fisheries), pollution, marine infrastruc
ture projects and disease (Burthe et al., 2014; Oro, 2014). 

While the main demographic driver of Curlew decline has long been 
noted as their low rate of breeding success (Cook et al., 2021; Grant 
et al., 1999), Curlew mortality is higher in winter months, particularly in 
juveniles, linked to a range of aforementioned factors (Taylor and Dodd, 
2013). The Curlew has therefore been the focus of a significant amount 
of research in recent years to support conservation efforts (Young et al., 
2020), with a lot of research centred on the breeding distribution (Berg, 
1992; Colhoun et al., 2015; Henderson et al., 2002; Johnstone et al., 
2017; Ławicki and Wylegała, 2011; O’Brien et al., 2002; Valkama et al., 
1998). Fewer studies have subsequently explored the drivers of the 
winter distribution (Burton et al., 2002a); however, with such signifi
cant global efforts to support the breeding success of Curlew, there re
mains a need to fully understand the environmental drivers across their 
full annual distribution, and not just their breeding season. If success
fully fledged chicks do not return after their winter migration, then 
measures taken to improve their breeding success are futile. 

Habitat degradation and loss is well cited as one of the primary 
drivers of Curlew decline (Young et al., 2020). For example, Johnstone 
et al. (2017) used a combination of statistical models to identify 
breeding abundance over a 15-year period, related to land cover type, 
strategy, and vegetation, identifying that while breeding was declining 
over time, it was highest when configurations were a mixture of moor
land and improved farmland. The consensus so far is that for breeding 
distributions Curlew tend to avoid forested areas (Berg, 1992; Brown 
et al., 2015; Johnstone et al., 2017) with a preference for bog and 
grasslands (Henderson et al., 2002; Ławicki and Wylegała, 2011), and 
an avoidance of human-dominated landscapes including roads (Burton 
et al., 2002b) and construction (Burton et al., 2002a). However, most (if 

not all) of the aforementioned studies focus on a relatively local scale (e. 
g., farmland, estuary) over a specific time-period (e.g., 10 years) to 
explore the impact of land cover type on abundance and/or density of 
birds (Berg, 1992; Burton et al., 2002a, 2002b; Duan et al., 2020; 
O’Brien et al., 2002; Valkama et al., 1998; Yang et al., 2011) with land 
cover data collected as part of the study, which while able to provide 
fine scale information as to the importance of land cover has implica
tions for scaling up the research to a regional level. 

Subsequently, the use of remotely sensed imagery, and particularly 
the Copernicus derived CORINE land cover has been widely employed to 
support understanding of bird distributions (Portaccio et al., 2021; 
Radović et al., 2011). An advantage of CORINE is the fine spatial reso
lution of the data set (minimum mapping unit of 25 ha for areal features 
and 100 m for linear features), despite challenges associated with the 
broad thematic categorisation (Koma et al., 2022; Lambert et al., 2021). 
However, despite its wide implementation in ecology, few studies have 
linked CORINE land cover categories to regional/continental distribu
tions of Curlew. This is particularly surprising given the variety of 
habitats Curlew utilise over the various stages of their life cycle, and the 
importance of understanding species-landscape relationships at a na
tional level given their substantial decline. 

One challenge with CORINE land cover is the number of categories, 
and the need to reduce the number of variables in the model selection 
phase. There are a plethora of approaches in existence, including en
tropy (e.g. Estrada and Real, 2021), principal components analysis (e.g. 
Cruz-Cárdenas et al., 2014), expert opinion, and Lasso penalisation (e.g. 
Iyer et al., 2019). The latter has been the least used approach within 
species distribution modelling, offering an opportunity for further 
testing. 

Several drivers of Curlew distributions have been invoked, yet to 
date these have not resolved the debate surrounding favourable land 
cover, particularly for winter distributions at a national extent. More
over, given the conservation status associated with Curlew globally and 
within the UK and Ireland, determining the drivers of their distribution 
will have important implications for developing effective and long- 
lasting conservation and management strategies. Here we focus on the 
important land cover and climatic drivers of Curlew distribution in the 
UK and Ireland, considering the wintering seasons (defined as November 
to February), over a 17-year period. In addressing this we explore to 
what extent the land cover and climate variables contribute consistently 
across multiple temporal windows, considering months, years, and 
CORINE windows. Finally, we evaluate the efficacy of Lasso penalisation 
as a model selection technique within species distribution modelling of 
Curlew. 

2. Materials and methods 

2.1. Curlew observation data 

Data for Curlew observations across Britain and Ireland were ob
tained from multiple sources: these included both public-domain and 
request-only data. In the former category, data came from collated 
submissions to the United Kingdom’s National Biodiversity Network 
(NBN) and from the Birds of Ireland data set held by Ireland’s National 
Biodiversity Data Centre (NBDC). Request-only Curlew data came from 
submissions to the eBird app published by Cornell Lab of Ornithology, 
from submissions to BirdTrack and Wetland Bird Survey (WeBS), made 
available by the British Trust for Ornithology (BTO), and from sub
missions to Ireland Wetland Bird Survey (I-WeBS), made available by 
BirdWatch Ireland (BWI) (see Supplementary Table S1). 

We sought to collect and aggregate as many positive sightings as 
possible, in order to achieve maximal coverage in assigning binary 
values to each 1 km square in the British (Ordnance Survey) and Irish 
(Ordnance Survey Ireland) grids; data from Northern Ireland are 
resolved to the latter. Note, the binary values here represent at least one 
Curlew being sighted in a particular grid square in a given month (coded 
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1) and no Curlew being sighted in a particular grid square in a given 
month (coded 0). Where multiple sightings are reported within an in
dividual grid, values are resolved to a single value (1 or 0) in our 
response dataset, with no duplication subsequently incorporated in the 
models. We cannot distinguish in the data between the situation where 
Curlew are genuinely absent and the situation where they are present 
but are not observed. The latter situation could arise either because 
Curlew are a cryptic species and may not be seen by birdwatchers, or 
because particular grid squares are simply not visited by birdwatchers in 
certain months. 

We reprojected all data to give us binary data as explained above 
based on 1 km squares in the Corine equal-area grid. For data originating 
from the WeBS and I-WeBS surveys, the survey areas themselves are 
restricted to defined wetland areas only, so will take no account of 
Curlews occupying 1 km squares which do not intersect these areas, 
which themselves are typically irregular polygons. Data from other BTO 
surveys (constituting ~90% of observations contributed within the UK), 
and from BirdWatch Ireland, are already resolved to 1 km centroids in 
the relevant grids, so no finer level of detail is available for the bulk of 
Curlew observations. Records from eBird come in with precise latitude 
and longitude co-ordinates, but this still comes with a level of uncer
tainty around the distance and direction of the observed bird(s) from the 
viewer; co-ordinates were mapped to the appropriate 1 km centroid on 
the Corine grid. 

Summaries by month and source across the years in each CORINE 
window are given in Supplementary tables S1 to S3. 

2.2. Explanatory variables 

In this study, we used a combination of land cover class and climate/ 
digital terrain model (DTM) variables over a 1 km × 1 km grid across the 
whole of Britain and Ireland. Full land cover classification descriptions 
are available at https://land.copernicus.eu/, while descriptions of the 
23 reported as important through our models are provided in Table A1. 

The land cover class variables were calculated using CORINE data for 
2006, 2012 and 2018. CORINE land cover products are the only 
contemporary land cover product that has a historical component 
available in Ireland (and until quite recently the land cover map with the 
finest spatial resolution). Therefore this product was used to allow 
consistency across the international borders. Since the source raster 
provided by CORINE is at a 100 m × 100 m (1 ha) resolution, we had 
100 of these centroids in each of the 1 km × 1 km squares. For each of 
the 37 land cover classes present within Britain and Ireland, the number 
of 100 m × 100 m centroids within each 1 km × 1 km square classified as 
that land cover class was stored as a discrete raster layer (at 1 km × 1 km 
resolution). Each such layer therefore gives the approximate integer 
percentage of every 1 km × 1 km square covered by its (the layer’s) 
respective class of land cover. We used the native CORINE equal-area 
projection for these data. 

We used a set of 5 climate variables, covering the period between 
January 2003 and February 2019, based on precipitation and temper
ature: monthly dry days with precipitation lower than 0.05 mm; 
monthly dry days with precipitation lower than 0.5 mm; monthly frost 
days (minimum temperature less than 0 ◦C); monthly days with a min
imum temperature lower than 5 ◦C; and monthly total precipitation. Our 
two definitions of ‘drought’ were considered to account for adminis
trative and geographic differences across international boundaries, as 
well as to incorporate the ecological requirements of the Curlew. Among 
those requirements is the accessibility of prey species: for example, the 
depth of invertebrates in the soil layer depends on soil penetrability, 
which depends in turn on precipitation (Barnett and Facey, 2016; Davis 
et al., 2006). A shortage of precipitation (< 0.5 mm) might therefore 
represent a qualitatively different change in habitat from a more severe 
reduction in precipitation (< 0.05 mm). As such, both precipitation 
thresholds were incorporated alongside total precipitation in the anal
ysis to investigate any differences across the wintering distribution, at a 

monthly resolution. Regarding the two temperature thresholds, along
side sub-zero days, we used days below 5 ◦C as a separate explanatory 
variable specifically in order to account for the significant increase in 
energetic costs for foraging Curlew when exposed to temperatures below 
5 ◦C—the Lower Critical Temperature (values for Curlew from Bowgen, 
2017). All 5 variables were derived from the Met Office Gridded land 
surface climate observations on the British side and from gridded 
climate observations and reanalysis data provided by the Met Éireann- 
research TRANSLATE Project team on the Irish side (O’Brien and Nolan, 
2023). In line with the land cover classes, the British and Irish data sets 
were merged and projected over the 1 km × 1 km grid using the native 
CORINE equal-area projection. 

The DTM and slope percent variables we used, again at a 1 km × 1 
km resolution, were derived from Ordnance Survey (OS data ©Crown 
copyright and database right 2022). 

2.3. Lasso penalisation 

Since there are 37 land cover classes for Britain and Ireland in the 
CORINE data set, it is desirable to fit models using only a subset of these 
variables. In order to find a reasoned way to select a relevant subset of 
the explanatory variables in our logistic generalized linear models, we 
use a technique called lasso (least absolute shrinkage and selection 
operator) regression. Lasso regression was first introduced in geophysics 
(Santosa and Symes, 1986) and later by Robert Tibshirani (Tibshirani, 
1996) who coined the term. 

The basic idea behind lasso regression is to apply a penalization term 
to the L1-norm (i.e. the sum of absolute values) of the set of coefficients 
in the regression model. It can be used in the context of linear modelling, 
but also in the context of generalized linear modelling. For illustrative 
purposes, consider a linear model with q explanatory variables with the 
form 

Yi = β0 +
∑q

j=1
βjXji 

For a given value of the penalization term, λ, lasso regression iden
tifies the values of the coefficients in the above model, subject to the 
constraint that 

∑q

j=1
∣βj∣ < t,

where the exact relationship between t and λ is data-dependent. (Note 
that the intercept term, β0, is not included in the constraint.) Explicitly, 
we wish to find 

min
β0 ,β

{
∑N

i=1

(
Yi − β0 − X⊤

i β
)2

}

subject to
∑q

j=1

⃒
⃒βj

⃒
⃒ ≤ t.

In the case of generalized linear models, negative log-likelihood 
contributions take the place of the squares of residuals in the above 
formula. Including weights, w1, w2, …, wN, for a given value of the 
penalty parameter, λ, lasso regression calculates 

min
β0 ,β

1
N

∑N

i=1
wil(yi, β0 + β⊤xi) + λ ‖ β‖1,

where l
(
yi, β0 + β⊤xi

)
is the negative log-likelihood contribution for 

observation i and ‖ β‖1 =
∑q

j=1∣βj∣, i.e. the sum of absolute values of the 
regression coefficients (not including the intercept), or the so-called L1 
norm. 

There is an R package called glmnet (Friedman et al., 2010) that 
enables the user to fit lasso penalized generalized linear models for a 
grid of values of the penalization parameter, λ. There is an online 
introduction to glmnet (Hastie et al., 2021) in which the details of the 
algorithm and appropriate plots can be found. 
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2.3.1. Applying lasso to the Curlew data 
Our observation data consist of binary data for Curlew sightings in 1 

km × 1 km squares across the whole of the British Isles for January, 
February, November and December for each year between 2003 and 
2018 as well as January and February for 2019 (a total of 66 months). 
Again, we emphasise that a 1 means that at least one Curlew was sighted 
in that grid square in that month, and a 0 means that no Curlew was 
sighted, either because there were none, or because they were there but 
not observed. The explanatory variables we use to fit our generalized 
linear models are of three types. Firstly, for the land cover classes, we 
use counts (out of a total possible of 100) of the different land cover 
classes in 100 m × 100 m grid squares within each 1 km × 1 km square 
in data we have obtained from CORINE (European Environment Agency 
(EEA), 2006, European Union, 2012, 2018). For a given year of the 
CORINE data, we consider it to be applicable to sightings data from three 
years prior to the CORINE date through to two years after. Hence we use 
CORINE 2006 data as explanatory variables for Curlew sightings data 
obtained between the start of 2003 and the end of 2008, we use CORINE 
2012 for sightings between 2009 and 2014, and CORINE 2018 for 
sightings from 2015 onwards. To facilitate communication, we label 
these intervals ‘CORINE windows’. 

The second type of explanatory variable is climate. We have monthly 
data (again at a 1 km × 1 km resolution) for the following five climate 
variables for each of the 200 months in the study: dry days less than 0.05 
mm rain; dry days less than 0.5 mm rain, total precipitation, number of 
frost days (minimum temperature less than 0 ◦C), and number of days 
with minimum temperature less than 5 ◦C. 

Finally, we also include two explanatory variables that are fixed 
across the whole of the time period of the study: a digital terrain model 
(DTM) and a variable, slope percent, that gives an indication of the 
average slope associated with each raster cell. 

The algorithm we have used to generate individual GLMs for each of 
the 66 months consists of two steps. The first is a filtering stage that 
enables us to decide, for each month and CORINE year combination (i.e. 
12 = 3 × 4 combinations), which of the land cover classes should be 
included in the individual monthly models within the relevant CORINE 
window. (Note that we only apply the L1-penalisation in the lasso 
function to the land cover class explanatory variables, and keep the 
remaining seven explanatory variables, i.e. the five climate variables 
and the two DTM variables, unconstrained when we use the lasso 
filtering. These latter seven variables are averaged across the years in a 
particular CORINE window for each of the months.) 

For the filtering, we assume that due to annual patterns in the 
behaviour of Curlew, within a particular CORINE window, the proba
bility of seeing a Curlew in a given grid square in a given month is fixed. 
Suppose for a particular month there are Nm years’ worth of data for that 
month in a given CORINE window. Then, if we write pij for the (fixed) 
probability for grid square (i, j) for the same month (where for ease of 
notation the dependence on month has been dropped), then the number 
of times that we see Curlew in that square in that month across the 
CORINE window has a binomial distribution with parameters Nm and pij. 
We can therefore model the probability of seeing a Curlew in a particular 
grid square in a particular month for a given CORINE window using a 
binomial family generalized linear model with a logit link function. We 
end up with 12 models (Four months for each of three CORINE data 
sets.) 

Using the R package glmnet, the lasso model (only penalising the 
land cover variables) is fitted for a grid of λ values. In order to select a 
value of this penalization parameter, we make use of 10-fold cross- 
validation, using the cv.glmnet function in the glmnet package. This 
works by splitting the data set (randomly) into 10 approximately equal 
subsets. Each of these subsets is independently used as a test data set, 
with the remaining 90% of the data constituting the training data. For 
each value of the parameter λ, this cross-validation process enables us to 
obtain a point estimate with confidence intervals for the deviance of the 
fitted GLMs. We have elected to use the lambda.1se option within the cv. 

glmnet function, corresponding to the most regularized (or penalized) 
model such that the cross-validated error is within one standard error of 
the minimum. Since cross-validation is a stochastic process, we ran it 
using 31 different pseudo-random numbers as starting points (random 
seeds) for the computation. To give the reader an insight into how the 
lasso regression works in the context of a binomial GLM for the Curlew 
data, consider Fig. 1. 

In the left-hand figure of Fig. 1 we see the fitted models (in terms of 
the land cover coefficients) at a range of values of the regularization 
parameter, λ. As we move from left to right, the models are progressively 
less penalized, since the L1 norm is plotted on the x − axis, and this is 
inversely related to the λ parameter. Each of the coloured lines corre
sponds to a particular explanatory variable. To read off the coefficients 
at a particular value of λ (or equivalently the L1 norm), imagine a ver
tical line at a particular x −value. Where this vertical line crosses the 
coloured line for a particular explanatory variable gives the value of the 
corresponding coefficient in the penalized binomial GLM. 

In the right-hand figure of Fig. 1 we show the results of a cross- 
validation procedure. At each value of logλ, we see the point estimate 
(in red) and a confidence interval for the deviance of the fitted GLMs 
obtained by 10-fold cross-validation. The dotted vertical line at the left 
of this figure shows the models at the value of the regularization 
parameter for which the GLM deviance is minimized. The other vertical 
line shows the lambda.1se value of (log)λ, i.e. the maximum value of 
lambda such that the cross-validated error is within one standard error 
of the minimum. 

We apply this cross-validation step 12 times (January, February, 
November and December for 2006, 2012 and 2018) using the same set of 
31 random seeds for each month-CORINE year combination. For each of 
these 334 models, we select only the land cover classes with non-zero 
coefficients (see second stage below). The signs of these coefficients 
do not change as the random seed varies, although for different land 
cover class variables, the proportion of the coefficients that are non-zero 
varies. We select the land cover class variables for which at least 20 of 
the 31 random number seeds (about 64%) resulted in a non-zero esti
mate of the coefficient. Note that P (X ≥ 20|X ~ Bin(31, 0.5)) ≈ 0.075. 

The second step in the algorithm generates individual monthly 
models using the lasso fits on the CORINE windows described above. 
Having selected the land cover variables that meet the threshold out
lined above, we combine these with the five climate and two DTM 
variables and then fit an unconstrained logistic GLM to a training set 
generated from the observational data for that specific month. The 
training set is a randomly selected set of half of the raster cells with the 
constraint that it contain exactly half of the cells in which an observation 
occurred and exactly half of the cells in which no observation occurred. 
The remaining half of the raster cells are used as a test data set for the 
monthly model. 

2.4. Model validation 

In order to assess the validity of the fitted models, we make use of 
two metrics, the area under the receiver operator characteristic curve 
(AUC) (see, e.g. Swets, 1988) and a slightly modified form of the Boyce 
index, the original form of which is described in Hirzel et al., 2006. 

The receiver operator characteristic curve (ROC) is a plot of true 
positive rate against false positive rate for all possible values between 
0 and 1 of a threshold parameter. The AUC is a threshold-independent 
metric that gives a measure of the efficacy of a model as a classifier, 
and takes values between 0 (worst) and 1 (best). Values above 0.5 
indicate a better-than-random classifier. 

For the Boyce index, the idea is to consider the vector of predicted 
values from the model, to split this into a number of bins, and for each 
bin, to look at how the proportion of presences actually found in the cells 
with predicted values in that window compares with the expected pro
portion if the presences were randomly distributed across all predicted 
values. This ratio, the predicted-to-expected (P/E) ratio, is called Fi in 
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Hirzel et al., 2006. For a well-fitting model, one would anticipate that 
the ratio of predicted proportion to expected proportion would increase 
for higher predicted values. The Boyce index (Boyce et al., 2002; Hirzel 
et al., 2006) is simply the Spearman correlation between the mean/ 
median bin value and Fi. It takes a value between −1 and + 1, with a 
value tending toward +1 indicating good to perfect predictions, values 
around 0 indicating predictions no different from those obtained by 
chance, and values toward −1 indicating counter-predictions, i.e. 
observing presences in low suitability classes and observing absences in 
high suitability classes (Hirzel et al., 2006). 

The modification of the Boyce index we use is simply to split the 
range of the fitted probabilities into bins, rather than the whole of the 
interval [0,1]. 

3. Results 

In Fig. 2 we can see the average signs (across the 31 random seeds) of 
the land cover class coefficients for each of the 12 combinations. Those 
coefficients whose average sign is positive are shown in green, negative 
in brown, while those whose average sign is zero are shown in white. 
Note that land cover classes for which the coefficient is zero in all 
combinations are not included in the figure. For the complete results for 
the four months, November to February, across all 31 random seeds and 
all three CORINE windows, we refer the reader to Supplementary 
Figs. S1 to S4. These are the matrices that were averaged for each of the 
four month-CORINE combinations to obtain Fig. 2. 

As described in the Methods section, we apply a threshold of 20 out 
of the 31 random seed runs (about 64%) to select the land cover vari
ables that are included in the unconstrained GLM. The consensus thus 
obtained for each of the 12 month-CORINE year combinations is shown 
in Fig. 3. 

There are a number of features of note in Fig. 3. Firstly, across all 
three of the CORINE windows, the models for the months November, 
December and January include only a small number of CORINE land 
cover variables. Within these months, the coefficients associated with 
those land cover variables are predominantly positive (shown in green in 
Fig. 3). For example, for 2006, Estuaries, Intertidal flats and Salt marshes 
have positive coefficients for all four months. In addition to these three 

variables, Beaches, dunes and sands and Port areas have positive co
efficients for December through February. Inland marshes feature (again 
with positive coefficients) in January and February with Sport and lei
sure facilities also featuring for February. The only negative (brown) 
coefficient in the 2006 CORINE window is for Non-irrigated arable land, 
in January 2006. In 2012, Estuaries, Intertidal flats, Salt marshes and 
Inland marshes have positive coefficients across all four months. Coastal 
lagoons have a positive coefficient in November 2012 and Port areas 
feature with a positive coefficient in November, December and 
February. Many other variables feature in February 2012, the most 
complex model selected in the 12 month-CORINE year combinations. 
The ones with positive coefficients are Water bodies, Water courses, 
Beaches, dunes and sands, Natural grasslands, Sport and leisure facil
ities, Dump sites and Industrial or commercial units. The land cover 
classes Principally agriculture, Pastures and Non-irrigated arable land 
have negative coefficients. In the 2018 models, Estuaries, Intertidal flats, 
Salt marshes, Inland marshes, Sport and leisure facilities and Port areas 
emerge with positive coefficients across all four months in the study. 
Non-irrigated arable land has a negative coefficient in all four months. In 
November and February 2018, Coastal lagoons have a positive coeffi
cient, and in February 2018, Water bodies and Beaches, dunes and sands 
also have positive coefficients. 

In order to assess the efficacy of the method described above for 
selecting an appropriate subset of land cover class explanatory variables 
in the binomial GLMs for the individual monthly models, we used the 
area under the receiver operator characteristic curve (AUC) and the 
modified Boyce index as our model evaluation metrics (see Materials 
and Methods for details). In both cases, these metrics were evaluated on 
the test data set (i.e. that half of the raster cells which remained after the 
training data were removed, subject to the constraint that the proportion 
of cells with a Curlew sighting be constant across training and test data 
sets). 

In Fig. 4 we see values of the AUC above 0.85 (horizontal line in 
Fig. 4) for months November through to February in most of the monthly 
models. This is an indication that the predictive power of the models is 
high. 

In Fig. 5 we see the modified Boyce index for all of the monthly 
models. The majority of months have a value above 0.75 for this metric 
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(horizontal line in Fig. 5). The months where the modified Boyce index is 
lower than 0.75 are January 2008, 2009 and 2016, November 2003, 
2004, 2005 and 2010, and December 2012 and 2013. Note, originally 
the Boyce index was constructed as a metric for models involving 
presence-only data. We have fitted logistic models where we have coded 
grid squares where no Curlew were observed as 0 s. As we note in the 
Introduction and Discussion, we cannot distinguish between true ab
sences and grid squares in which Curlew were present but not detected 
in particular months. Nevertheless, the modified Boyce index offers a 
quantitative evaluation of the extent to which cells with a high predicted 
probability correspond to actual Curlew observations in the data sets. 

3.1. Model predictions 

For each month in our study, we use the model obtained from the 
training data set to make predictions of the probability of a Curlew 
sighting across all of the raster cells for that month. Hence, for each 
month-CORINE window combination, we have a number of rasters of 
predicted probabilities. For example, for January-CORINE2006, we 
have a predicted probability raster for each of January 2003, 2004, 
2005, 2006, 2007, 2008. In Figs. 6, 7, and 8 we see the means and 
standard deviations of the predicted probabilities of Curlew sightings 
across Britain and Ireland for the period November to February for 
CORINE windows 2006, 2012 and 2018 respectively. 

For all three of the CORINE windows, (Figs. 6, 7, and 8), we observe a 
distinctly coastal distribution (across both Ireland and Britain) of re
gions with a high predicted probability of Curlew sightings between 
November and February (the red regions on the yellow and red maps in 
the Figures). 

When we consider the variability of the fitted probabilities by 
looking at the standard deviations across the years of the CORINE 
windows (the blue and white maps in Figs. 6, 7, and 8), we observe that 
there is low variability across highland regions in Britain and Ireland for 
the months November to February for all three CORINE windows. This is 
to be expected since the predicted probabilities are generally lower in 
these regions at these times of year. For the CORINE 2006 and 2012 
windows, variability is fairly uniform across Ireland for November 
through to February. The eastern and south-eastern parts of Britain show 
high variability November to February for all three CORINE windows. 

3.2. Comments on coefficients of climate and terrain variables in models 

In the Supplementary Material, Figs. S5 to S16 show the coefficients 
obtained in the fitted models for the months November through to 
February for each of the three CORINE windows. The two variables 
corresponding to number of dry days (less than 0.05 mm rain and less 
than 0.5 mm rain) do not show a clear relationship with the log-odds of a 
Curlew sighting. In some month-CORINE combinations, both 
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coefficients are close to 0; in others, one or both of the coefficients are 
significantly different from 0, but with a lot of variability in the pattern. 

However, the number of frost days in a particular grid square is 
influential on the log-odds of a Curlew sighting, with the majority of 
models including a significant negative coefficient for the frost days 
variable. (Although this is not uniformly the case across all months in all 
of the CORINE windows, the pattern is nevertheless striking enough to 
conclude that Curlew are in general less likely to be seen in colder re
gions.) The total precipitation is not a particularly influential variable in 
any of the models. 

In the period November to February, the DTM variable is often 
negative and the slope percent variable is often strongly positive. These 
two variables are correlated, and a balance between the two offers 
flexibility in the models. The inclusion of these two variables achieved a 
considerable improvement in the fit of the models, resulting in a 
reduction in the residual deviance of the order of 1000s. (Data not 
shown.) 

4. Discussion 

In order to assess the distribution of Curlew sightings through the 
winter (November to February), we have combined a CORINE-derived 
land cover map with environmental variables. Lasso penalisation 
applied to the 37 CORINE land cover classes across the the island of 
Ireland and Great Britain generated models with a fairly small number of 
land cover class variables (in the range 3–8) for the winter months 

November, December and January (Fig. 3). This suggests that the Cur
lews utilise a specific set of habitats through their wintering distribution. 
Estuaries, Intertidal flats, Salt marshes, Beaches, dunes and sands and 
Port areas feature in most of the selected models. This concurs with the 
known coastal distribution of Curlew in Britain and Ireland (Humphreys 
et al., 2020), with models parameterised at a national extent reporting 
high accuracy values (Figs. 4, 5). 

February appeared to be the most complex month in terms of vari
ables selected by the lasso regression (at least in 2012 and 2018) 
compared to the other months of November to January (Fig. 3). How
ever, the locations of habitat suitability did not visibly change across the 
four months or three CORINE windows (Figs. 6, 7, and 8). Land cover 
categories of significance in February 2012 include coastal lagoons 
(+ve), water bodies (+ve), water courses (+ve) natural grasslands 
(+ve), agriculture (−ve), pasture (−ve) non-irrigated arable land(−ve), 
dump sites (+ve) and industrial and commercial units (+ve). That 
waders avoid artificial structures during the breeding season is well 
established (Wallander et al., 2006), but our results suggest a slight 
contradiction to this for the wintering distribution, especially in 
February. February is a month in the UK and Ireland when farmers begin 
to prepare the ground for crops, which could provide access to addi
tional invertebrate resources in freshly disturbed fields, which could be 
increasingly important for the birds due to potentially harsher weather 
conditions at the coast. Populated coastal areas have a legacy of 
numerous solid waste disposal sites (Nicholls et al., 2021), as well as a 
high proportion of industrial and commercial units, including airport 
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installations and shopping centres (Flood and Sweeney, 2012; Paprotny 
and Terefenko, 2017). The inclusion of these features in the models may 
be nothing more than a proxy for coastal habitats; however, these lo
cations are often associated with lower (human) population densities 
(Dikshit et al., 2001) and can transition to areas with unused and 
(relatively) abandoned green spaces (Hackworth, 2014) which could 
create a preferential feeding opportunity for waders. However, such 
inference needs to be considered critically with regard to reported 
sightings, as these areas may represent a form of sampling bias whereby 
people have more access to these locations than surrounding private 
agricultural land, and consequently increase the observations compared 
to other habitats nearby. 

Moreover, while natural grasslands were reported to have a positive 
relationship with Curlew in February 2012, we would have expected to 
have identified a positive relationship with improved grasslands most 

associated with pastures and grass-based agriculture where their pre
dominant food source is earthworms (Navedo et al., 2020). We note here 
that BirdTrack records are usually submitted from places birdwatchers 
find interesting to visit. Agriculture, pasture and non-irrigated arable 
land are all likely to be low-reward environments for birdwatching 
during the winter months (compared to, e.g. wetland or estuarine sites). 
This lack of recording effort, combined with potential access issues 
concerning farmland may contribute to the observed negative associa
tions. This spotlights the importance of tracking technology (e.g., Global 
Positioning System – GPS) that can remotely monitor the birds in hard- 
to-access locations and that affords new insights into their habitat use 
and distribution (Demsar et al., 2015). To date, tracking data have been 
less readily employed within SDM due to a variety of methodological 
challenges including spatial and temporal autocorrelation and small 
geographic distributions (Holloway and Miller, 2017), but opportunities 
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exist to inform on regional patterns of wintering distribution. Alterna
tively, the lack of grassland and pasture reported in the models in Fig. 3 
may represent the overwhelming absence of Curlew on these habitats 
inland. For example, Ireland is estimated to be 58.4% grassland (CSO, 
2020), with much of this in the centre of the country. Due to the coastal 
distribution of the Curlew in wintering months, at a national scale these 
habitats are largely being avoided by the Curlew, except within coastal 
regions (Figs. 6, 7, and 8). This suggests that finer-scale case-studies are 
required to parse out the influence of coastal landscape configurations 
that are important to wintering Curlew, and consequently an area of 
future research. It also highlights the importance of considering the 
wider spatial configuration of the landscape and not simply the pro
portion of land cover. Several studies (Portaccio et al., 2021; Radović 
et al., 2011) parameterise species distribution with the percentage land 
cover in an area, but perhaps the importance of focal neighbourhoods 
are important here. The winter time importance of habitats to Curlew is 
not purely determined by land use but is a function of land use and other 
parameters such as proximity to estuarine/coastal locations, communal 
roosts, etc. which are hard to capture in a classic SDM. 

The more ‘complex’ pattern of February in land covers (2012, 2018) 
may reflect a shift in the temperature, as January and February usually 
make up the two coldest months of the year (Met Office, 2016; Walsh, 
2012). Here, birds may be required to travel to suboptimal habitats in 
search of food or to avoid the harsher conditions at the coast. For 
example, Navedo et al. (2020) identified Curlew abundance increased in 
fields that had the lowest food availability, feeding preferentially on the 
smallest class (less than 32.5 mm) of epigeic earthworms. These authors 
imply a trade-off between energy intake rate and other fitness compo
nents, or alternatively it could be a competitive interaction among other 

waders or gulls, or again low quality farmland is less disturbed by 
people, animals, and machinery than higher quality grassland. Alter
natively, birds in February may be preparing for migration and may 
make short journeys inland or up and down the coast, bringing them into 
contact with a wider range of land uses than in the immediate vicinity of 
their main wintering grounds. Regardless, our results certainly suggest 
that Curlew in the UK and Ireland begin to utilise a wider range of 
habitats in February (consistent across 2012–2018). 

There is strong evidence that as the number of frost days in a 
particular grid square in a given month increases, the probability of 
seeing a Curlew in that square tends to decrease. The numbers of models 
with negative coefficients for the frost variable are 13/16 (81%) for 
November models, 12/16 (75%) for December models, and 16/17 
(94%) for the January and February models, with little discernible 
pattern in the variation between different CORINE windows. Abundance 
patterns for Curlew have been noted to drop during cold winters, with 
Woodward et al. (2021) noting milder winters may increase abundance 
and possibly affect distributions. As the number of frost days increases, 
the substrates into which Curlew are probing get harder with the po
tential of damaging the birds’ beaks. In addition, the invertebrates move 
to deeper levels and become inaccessible to the Curlew. 

While the compilation of different data sources may impact the re
sults of the models, recent research has identified that data quantity is 
more important than spatial bias in the predictive performance of SDMs 
(Gaul et al., 2020). Due to the high data requirements of parameterizing 
monthly SDMs, we opted for data quantity over spatial bias and un
certainty introduced by combining multiple sampling structures. Fitting 
temporally explicit species distribution models that capture seasonal 
distributions is one of the research frontiers of SDM (Milanesi et al., 

2015 2016 2017 2018 2019

2009 2010 2011 2012 2013 2014

2003 2004 2005 2006 2007 2008

Jan Feb Nov DecJan Feb Nov DecJan Feb Nov DecJan Feb Nov DecJan Feb Nov Dec

Jan Feb Nov Dec

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Month

B
oy

ce
 in

de
x

Boyce index for all models

Fig. 5. The (modified) Boyce index for all individual monthly models for months January, February, November and December. Horizontal line is at 0.75.  

K. Kenobi et al.                                                                                                                                                                                                                                  



Ecological Informatics 77 (2023) 102244

10

2020); coupled with the high accuracy of our models (Figs. 4 and 5) and 
ecologically realistic outputs (Figs. 6 to 8), we are confident this decision 
has not significantly biased the results. Moreover, when coupled with 
Supplementary Tables S1 to S3, it is clear that such an approach was 
needed to develop monthly models of temporally explicit distributions. 
We should also note here that we investigated a binary representation of 
presence and pseudo-absence. As such, there persists a need to explore 
habitat suitability for wintering Curlew in conjunction with other pop
ulation measures, such as abundance and density. New methods, such as 
Poisson point process models, are emerging as suitable tools to predict 
the distribution and abundance of species from presence-only data 
(Schank et al., 2017). Recent research has shown that that cold winter 
weather and increased bird population density negatively affected 
wintering Curlew survival rates in the UK (Cook et al., 2021), suggesting 
that future studies should focus on developing predictions of both the 
distribution and density of Curlew to best inform biodiversity 
conservation. 

To provide consistency across the international borders for the entire 
temporal period of study, we used three CORINE time windows with the 
assumption that land cover was consistent for those months. Temporally 
explicit SDMs provide novel insight into the dynamic distributions of 
species (Milanesi et al., 2020). Developing temporally explicitly 
monthly SDMs was a primary aim of our research, but we do acknowl
edge that some of the land covers may have changed. A recent study by 

Cole et al. (2022) noted that only 1.16% of the UK changed between 
2012 and 2018, with a previous report documenting an increase in 
intertidal flat coverage from 274,419 ha in 2006 to 274,597 ha in 2012, 
with 127 ha of land changed from salt marshes to intertidal flats and a 
further 15 ha of salt marshes converted to either industrial and com
mercial units (9 ha) or construction sites (6 ha) (Cole et al., 2018). These 
numbers are small, and when considered at the national scale of UK and 
Ireland, we are confident that the monthly models have not been 
significantly compounded by unobserved land cover conversions. 
However, these changes do indicate that there are certain anthropogenic 
processes that may affect Curlew overwintering habitats, and as such 
future research should explore how short-scale land cover conversions 
may impact Curlew behaviour, particularly in relation to the winter 
distribution. 

5. Conclusion 

Using lasso penalisation as a model selection procedure in logistic 
generalized models has enabled us to identify a small set of land cover 
variables that, when combined with climate variables and a digital 
terrain model, have good explanatory power in terms of Curlew over
wintering distributions on the island of Ireland and Great Britain (Figs. 4 
& 5). Reproducibly, from November to January between 2003 and 2019, 
the coastal land cover classes, Estuaries, Intertidal Flats, Salt Marshes 

Fig. 6. The yellow and red plots show the mean predicted probabilities for the models (fitted on training data sets consisting of half of the observations) for 
November through to April for the CORINE2006 window. The redder the points, the higher the probabilities. The blue and white plots show the standard deviations 
of the predicted probabilities. The darker the blue, the higher the standard deviation. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

K. Kenobi et al.                                                                                                                                                                                                                                  



Ecological Informatics 77 (2023) 102244

11

and Port Areas, feature prominently in the sets of explanatory variables 
selected by the lasso regression. Models fitted on training data sets 
including half of the grid squares coded 1 (Curlew observed) and half of 
those coded 0 (Curlew not observed) show higher predicted probabili
ties of Curlew sighting around the coasts over the 17 years of the study. 

This research has demonstrated that for modelling Curlew distribu
tions, satellite land cover data are a useful adjunct to environmental 
data. Further, when a robust model selection procedure is used (in our 
case cross-validated lasso regression), it becomes possible to observe 
consistent patterns over time in terms of the habitat types on which 
Curlew are observed. The winter distribution of Curlew sightings we 
observe is congruent with existing studies, while offering a more 
detailed understanding of where and when Curlew are observed. 
Moreover, this study represents the first regional scale analysis on the 
impact of landscape and climate features on wintering curlew distribu
tion, identifying the importance of landscape factors that warrant 
further research, such as the importance of artificial structures and the 
importance of February within the migration of the Curlew. 

Data availability 

Observation records for Eurasian curlew were obtained from the 
following sources: eBird from Cornell Lab of Onrnithology: Curlew re
cords for the United Kingdom, the Republic of Ireland, and the Isle of 

Man [1]. NBN Atlas for the UK National. 
Biodivesrity Network: Curlew records for the United Kingdom and 

the Isle of Man [2]. Ireland National Biodiversity Data Centre (NBDC): 
Birds of Ireland data set [3]. British Trust for Ornithology (BTO): Bird
Track [4]. British Trust for Ornithology (BTO): WeBS [5]. Bird
WatchIreland (BWI): I-WeBS [6]. 

eBird data requests require online application; requests are typically 
granted within hours. NBN and NBDC data are in the public domain and 
available through a formal request. Accessing both BTO and BWI data 
entail a formal process of request submission and the completion of an 
online form (one per data source). Curlew observations from the above 
sources recorded during the period January 2003 to were amalgamated 
and reprojected to the European Lambert azimuthal equal area co- 
ordinate reference system used by Corine land cover. Presences were 
recorded per square kilometre, per month, where an observation was 
recorded in any of the above data sources. In square kilometres where no 
observation was recorded in any of our data sources, we inferred that 
curlew were absent. We are conscious that this includes poorly-surveyed 
areas and accept the possibility that there are a non-negligible quantity 
of false absences in our derived data set. In combining multiple data sets, 
we have simply sought to minimise false absences as much as possible. 
[1] 

eBird. 2021. eBird: An online database of bird distribution and 
abundance [web application]. eBird, Cornell Lab of Ornithology, Ithaca, 

Fig. 7. The yellow and red plots show the mean predicted probabilities for the models (fitted on training data sets consisting of half of the observations) for 
November through to April for the CORINE2012 window. The redder the points, the higher the probabilities. The blue and white plots show the standard deviations 
of the predicted probabilities. The darker the blue, the higher the standard deviation. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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New York. Available: http://www.ebird.org. (Accessed: November 12, 
2021).[2] 

See Supplementary Material[3] 
Birds of Ireland. 2021. Birds of Ireland online data set. Birds of 

Ireland, National Biodiversity Data Centre. Available: https://maps. 
biodiversityireland.ie/Dataset/155. (Accessed: Novemeber 12, 2021). 
[4] 

British Trust for Ornithology, online Data Request form. Available: 
https://app.bto.org/data-request/new-data-request.jsp. (Submitted, req 
uesting BirdTrack data: October 14, 2021).[5] 

British Trust for Ornithology, downloadable WeBS Data Request 
Form. Available: https://www.bto.org/our-science/projects/wetland- 
bird-survey/data/submit-data-request. (Completed and sent: October 
14, 2021).[6] 

BirdWatch Ireland, downloadable I-WeBS Data Request Form. 
Available: https://birdwatchireland.ie/publications/i-webs-data-reque 
st-form/. (Completed and sent: December 8, 2021). 

Code and guidance for reproducible analysis are available at: 
https://github.com/echoes-sdm/curlew_SDM 
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