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ABSTRACT Filamentous large sulfur-oxidizing bacteria (FLSB) of the family Beggiato-
aceae are globally distributed aquatic bacteria that can control geochemical fluxes
from the sediment to the water column through their metabolic activity. FLSB mats
from hydrothermal sediments of Guaymas Basin, Mexico, typically have a “fried-egg”
appearance, with orange filaments dominating near the center and wider white fila-
ments at the periphery, likely reflecting areas of higher and lower sulfide fluxes, re-
spectively. These FLSB store large quantities of intracellular nitrate that they use to
oxidize sulfide. By applying a combination of 15N-labeling techniques and genome
sequence analysis, we demonstrate that the white FLSB filaments were capable of
reducing their intracellular nitrate stores to both nitrogen gas and ammonium by
denitrification and dissimilatory nitrate reduction to ammonium (DNRA), respectively.
On the other hand, our combined results show that the orange filaments were pri-
marily capable of DNRA. Microsensor profiles through a laboratory-incubated white
FLSB mat revealed a 2- to 3-mm vertical separation between the oxic and sulfidic
zones. Denitrification was most intense just below the oxic zone, as shown by the
production of nitrous oxide following exposure to acetylene, which blocks nitrous
oxide reduction to nitrogen gas. Below this zone, a local pH maximum coincided
with sulfide oxidation, consistent with nitrate reduction by DNRA. The balance be-
tween internally and externally available electron acceptors (nitrate) and electron
donors (reduced sulfur) likely controlled the end product of nitrate reduction both
between orange and white FLSB mats and between different spatial and geochemi-
cal niches within the white FLSB mat.

IMPORTANCE Whether large sulfur bacteria of the family Beggiatoaceae reduce
NO3

� to N2 via denitrification or to NH4
� via DNRA has been debated in the litera-

ture for more than 25 years. We resolve this debate by showing that certain mem-
bers of the Beggiatoaceae use both metabolic pathways. This is important for the
ecological role of these bacteria, as N2 production removes bioavailable nitrogen
from the ecosystem, whereas NH4

� production retains it. For this reason, the topic
of environmental controls on the competition for NO3

� between N2-producing and
NH4

�-producing bacteria is of great scientific interest. Recent experiments on the
competition between these two types of microorganisms have demonstrated that
the balance between electron donor and electron acceptor availability strongly influ-
ences the end product of NO3

� reduction. Our results suggest that this is also the
case at the even more fundamental level of enzyme system regulation within a sin-
gle organism.
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The family Beggiatoaceae includes a diverse group of large sulfur-oxidizing bacteria,
like Thioploca, Beggiatoa, and Thiomargarita spp., that employ an equally diverse set

of physiological and metabolic adaptations to inhabit a wide range of niches in benthic
aquatic environments (1, 2). A subset of this family, the filamentous large sulfur-
oxidizing bacteria (FLSB), are generally described as motile vacuolated filament-forming
chemolithoautotrophs and mixotrophs that form characteristic mats on the seafloor
(1–3). Filaments can reach over 100 �m in diameter and accumulate and store up to
several hundred millimolar NO3

� in internal vacuoles (4). FLSB mats are typically found
on sediments with low O2 content in the overlying water and a substantial HS� flux
from deeper sediment layers (5). Filaments use their gliding motility to move between
oxic and sulfidic zones in the sediment, mostly residing where both O2 and HS�

concentrations are very low (6–8). Under anoxic conditions, FLSB use NO3
� stored in

their vacuoles to oxidize HS� to elemental sulfur (S0), which they also store internally.
Near the sediment surface, they recharge their NO3

� stores and use O2 or NO3
� to

oxidize their stored S0 to SO4
2� that is excreted (6).

There is an ongoing debate as to whether FLSB reduce their internally stored NO3
�

to N2 by denitrification or to NH4
� by DNRA. Freshwater FLSB mats dominated by

Beggiatoa spp. were shown to reduce NO3
� to N2 and NH4

�, while the isolated
freshwater type strain of Beggiatoa alba reduces NO3

� to NH4
� only (9, 10). Whole-

sediment studies of coastal FLSB mats suggested that DNRA is the dominant pathway
of NO3

� reduction (6, 11), while Arctic marine FLSB showed N2O accumulation after the
addition of acetylene, indicating denitrification (12). Targeted studies trying to solve
this dispute are complicated by the fact that no cultures of NO3

�-storing FLSB are
available.

Genomic information from FLSB that can be used to infer their metabolic pathways
is currently limited to several partial genomes of marine filaments (12–15), recon-
structed metagenomes (16), and cultured strains (17–19). Complete pathways have not
been identified for either denitrification or DNRA. Putative genes for the dissimila-
tory nitrate reductase (NxrA/NarG) necessary for both pathways have been identi-
fied in all marine FLSB, along with the nitrite (NO2

�) and nitric oxide (NO) reduc-
tases (NirS and NorB, respectively) required for denitrification. However, genes
encoding the enzymes for the terminal steps in both pathways, NO2

� reduction to
NH4

� in DNRA (catalyzed by NirB) and nitrous oxide reduction to N2 in denitrifica-
tion (catalyzed by NosZ), could often not be identified. Therefore, genomic infor-
mation has been insufficient to resolve the debate about the usage of NO3

�

reduction pathways in large vacuolated FLSB.
Motile FLSB traveling between oxic and sulfidic sediment zones are exposed to

extreme redox shifts. We hypothesized that these motile FLSB might be capable of both
denitrification and DNRA, with the activity of each process shifting in response to the
filament’s position relative to O2 and HS� gradients. To test this hypothesis, we
experimented with white and orange FLSB mats that are morphologically and phylo-
genetically distinct (20) and occupy different zones within the highly dynamic hydro-
thermal sediments of the Guaymas Basin (21). Orange FLSB mats dominate in sedi-
ments with strong hydrothermal flow where HS� supply is maximal and often reaches
close to the surface (20). White FLSB mats, on the other hand, typically dominate at the
periphery of these regions, where hydrothermal activity and HS� fluxes are attenuated.
The resulting “fried-egg” pattern, with an orange FLSB mat surrounded by a white FLSB
mat, is consistently observed in organisms from the Guaymas Basin (21). We incubated
FLSB filaments with [15N]NO3

� and tracked its transformation into both [15N]NH4
� and

[15N]N2. Microsensor measurements revealed the vertical distribution of denitrification
through the FLSB mat relative to O2, HS�, and pH profiles, and the depth of maximum
DNRA activity could also be inferred. This was complemented with an assessment of the
genes potentially encoding the denitrification and DNRA pathways in orange and white
FLSB filaments.
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RESULTS
[15N]NO3

� incubations. Laboratory-incubated white Guaymas Basin FLSB mats
performed denitrification and DNRA simultaneously. 15N accumulated in both the N2

and NH4
� pools when cleaned filaments were incubated with [15N]NO3

� as the
substrate, though [15N]N2 was consistently produced at a higher rate than [15N]NH4

�

(Fig. 1 and Table 1). After the FLSB filaments were destroyed, [15N]N2 and [15N]NH4
�

production ceased or decreased by at least a factor of �2 (Fig. 1 and Table 1). Thus,
most of the observed NO3

� reduction was driven by the activity of the FLSB filaments
and not by their smaller microbial epibionts. Orange mats produced less [15N]N2 than
white mats, and this production was driven entirely by epibionts in five out of six
replicates. Notably, the [15N]N2 accumulation rate remained effectively unchanged
before and after the filament destruction treatment in these orange mats (Table 1),
indicating that epibiont denitrification activity was unaffected by this treatment. On the
other hand, orange mats produced [15N]NH4

� at rates similar to or higher than the
white mats (Fig. 1 and Table 1), and [15N]NH4

� production decreased by at least a factor
of 7 following filament destruction, indicating that this NO3

� reduction pathway was
driven by the orange FLSB. Taken together, these data demonstrate that DNRA was the
only significantly active NO3

� reduction pathway in FLSB from orange mats, and both
pathways were active in FLSB from white mats, with denitrification occurring at a higher
rate than DNRA.

Acetate and HS� additions did not influence nitrogen conversion rates consistently
between different sampling sites. At Ultra Mound, both white and orange FLSB
[15N]NH4

� production rates were highest in sulfide-added treatments. At Cathedral Hill,
both white and orange FLSB [15N]N2 production rates were highest in acetate-added
treatments (Table 1). Filaments from both white and orange mats were also incubated
with [15N]NH4

�, and no 29N2 production was observed (data not shown). Therefore, the
N2 production observed in other treatments was not driven by organisms that perform

FIG 1 Time series of cumulative [15N]NO3
� reduction to [15N]N2 (a and b) and to [15N]NH4

� (c and d),
normalized to protein content for each of the six orange (a and c) and six white (b and d) laboratory-
incubated FLSB mat pieces. Each line represents an individual mat piece. The vertical black arrows
indicate when the FLSB mats were destroyed at around 20 h of incubation.
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anammox, a process associated with other FLSB of the Beggiatoaceae, i.e., bundle-
forming Thioploca-like filaments and their sheath epibionts (22).

Microsensor measurements. In the white FLSB mat that survived transport back to
Germany, O2 diffusing from seawater into the mat was consumed in the top 1 mm (Fig.
2a). The depth where O2 disappeared coincided with a pH minimum. HS� diffused
upwards from a thin layer of sediment at the bottom of the container and was
consumed at around 3 mm depth. There was a 2-mm-wide gap between the first and
the third millimeter, in which neither O2 nor HS� was detectable. A pH maximum was
observed at around 4 mm. Following the addition of 20% acetylene to the seawater
medium of the same white FLSB mat, N2O was produced throughout the mat within 10
min, and production persisted for at least 30 min. Maximum N2O production occurred
at a depth of around 1 mm inside the mat, just below the zone where O2 disappeared
(Fig. 2b). In a second approach, N2O production in white FLSB mats was investigated in
batch incubations. These mats also produced N2O after acetylene was added, and N2O
production ceased after the FLSB filaments were destroyed (see Fig. S4 in the supple-
mental material). We conclude that the FLSB filaments, and not the associated smaller
microorganisms, produced the N2O.

Nitrate reduction genes in FLSB genomes. The orange filament genome (13)
includes putative genes for dissimilatory nitrate reduction to nitrite via either NxrA/
NarG or periplasmic NapF (filled squares in Table 2). However, no gene for NO2

�

reductase (NirB) in the DNRA pathway was found (open squares in Table 2). Within the
denitrification pathway, we could not identify genes for all subunits of the nitrous oxide
reductase (Nos), for most subunits of the NO-forming nitrite reductase (NirS), or for the
nitric oxide reductase (Nor) (Table 2). In contrast, the genome from unpigmented white
Guaymas Basin filaments (16) (Fig. 3) has almost-complete sets of genes for both DNRA
and denitrification (Table 2).

Phylogeny and morphology of FLSB filaments. Narrow orange and wide white
Guaymas Basin filaments are phylogenetically distinct, as shown by analyzing the 16S
rRNA gene sequences obtained from individual filaments collected over several sam-
pling campaigns (Fig. 3a). Consistent with morphological descriptions of other FLSB,
we could detect a thin layer of membrane and cytoplasm surrounding a large

TABLE 1 Rates of [15N]NO3
� reduction to [15N]N2 and [15N]NH4

� from each of the six orange and six white laboratory-incubated FLSB
mat pieces

Mat Sitea Treatmentb

Protein content
(�g · liter�1)

Production rate (pmol N · [�g protein]�1 · h�1)c

[15N]N2 [15N]NH4
�

Whole mat Epibionts FLSB
Whole
mat Epibionts FLSB

White UM SW 4.4 652 � 94 0 � 0 652 � 94 168 � 9 0 � 0 168 � 9
SW 2 1,140 � 234 106 � 145 1,034 � 275 183 � 19 0 � 0 183 � 19
�HS� 1.2 1,016 � 157 0 � 0 1,016 � 157 611 � 40 347 � 109 264 � 116

CH SW 8.2 583 � 39 40 � 29 543 � 49 251 � 22 47 � 10 204 � 24
�HS� 23 174 � 4 45 � 8 129 � 9 103 � 9 14 � 1 90 � 9
�DOC 13.9 847 � 55 195 � 31 651 � 63 346 � 32 25 � 10 321 � 33

Orange UM SW 19 110 � 15 115 � 59 0 � 61 6 � 23 21 � 10 0 � 25
SW 15 86 � 12 91 � 35 0 � 37 87 � 12 1 � 0 86 � 12
�HS� 9.7 133 � 15 263 � 101 0 � 102 419 � 37 24 � 8 395 � 38

CH SW 2.5 0 � 0 0 � 0 0 � 0 949 � 61 17 � 0 932 � 61
�HS� 6.9 0 � 0 0 � 0 0 � 0 134 � 18 18 � 3 116 � 18
�DOC 4.4 45 � 12 0 � 0 45 � 12 54 � 4 7 � 4 47 � 6

aSampling locations were Ultra Mound (UM) and Cathedral Hill (CH); more details can be found in Table S1 and Fig. S1.
bTreatments were seawater only (SW), seawater � HS� (�HS�), and seawater � dissolved organic carbon (�DOC) in the form of acetate.
cRates were calculated as the slope of the linear regression of the time points displayed in Fig. 1. Uncertainty in these rates was calculated as the standard error of
the slope. The “whole mat” rate is the rate calculated from the first phase of each incubation, when FLSB filaments were intact. The “epibionts” rate is the rate
calculated from the second phase of each incubation, after the FLSB filaments were destroyed. The “FLSB” rate is the whole mat rate minus the epibionts rate. This
rate represents the activity of only the FLSB filaments. In many cases, the whole mat and FLSB rates are similar, because there was very little activity following
filament destruction, demonstrating that the filaments were responsible for most of the total mat activity.
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vacuole that took up most of the cell volume in the multicellular wide white
filaments (Fig. 3b and c).

DISCUSSION
Simultaneous denitrification and DNRA activity in FLSB mats. We demonstrated

that lab-incubated white FLSB mats from Guaymas Basin can reduce NO3
� to both N2

via denitrification and to NH4
� via DNRA (Fig. 1 and Table 1). We further showed that

the bulk turnover in both denitrification and DNRA could be attributed to the FLSB
filaments and not the smaller mat-associated microorganisms (epibionts). Although
genome analyses of different types of FLSB indicate that genes for denitrification and
DNRA can in some cases occur jointly in the same organism (Table 2), previous studies
using whole mats only showed that the presence of the FLSB promoted either
denitrification (9, 12) or DNRA (6, 11).

The filaments that form the differently colored FLSB mats from Guaymas Basin can
be sorted into several size classes (5, 20) and potentially harbor several phylotypes
based on 16S rRNA gene sequencing (20). Filaments of various diameters were also
observed in the mats used in this study. Combined with earlier samples, each mor-
phogroup (medium-sized orange, wide white, and narrow white filaments) forms a
distinct monophyletic cluster among other vacuolated, marine filamentous, and non-
filamentous LSB in the family Beggiatoaceae (Fig. 3). Here, we reanalyzed a genome that
was originally reconstructed from a sediment-derived metagenome (16). Based on 16S
rRNA gene sequence analysis, we confidently assign it to represent the genetic poten-
tial of the wide white filaments that also make up the bulk of white FLSB mats. We
identified the complete pathways for both denitrification and DNRA within this ge-
nome (Table 2) and conclude that these filaments had the genetic potential to carry out
both processes as observed in the stable isotope incubations (Fig. 1).

FIG 2 Microsensor profiles in a white FLSB mat. The top of the mat was carefully observed and is located at depth
0.0 cm in the profiles. (a and b) Oxygen, H2S, total sulfides (Stot), and pH microsensor profiles (a), and oxygen and
N2O microsensor profiles (b) measured at 10-min intervals from 0 to 50 min following the addition of acetylene.
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In lab-incubated FLSB mats dominated by orange filaments, DNRA was the only
NO3

� reduction activity that could be associated consistently with the FLSB filaments
(Fig. 1). However, we could not find complete DNRA or denitrification pathways in the
genome of a single orange filament (Table 2), reemphasizing that negative genomic
results carry no proof. Given the estimated 98% completeness of this genome (18), it is
possible that these genes reside in the as-yet-unsequenced portion of the genome. It
is also possible that these filaments carry out DNRA by a novel mechanism. For
example, the octaheme cytochrome that gives the orange filaments their color was
demonstrated to reduce nitrite to ammonia in vitro (23), giving it the potential to
replace the traditional NirB nitrite reductase enzyme in the DNRA pathway. Sequence
database comparisons show that this protein falls within a large group of octaheme
cytochromes annotated as hydrazine or hydroxylamine oxidases. These functions are
part of the nitrification (24) and anammox (25) pathways that are not present in
Beggiatoaceae (13). Thus, the cytochrome in the orange FLSB likely does not oxidize
hydrazine or hydroxylamine but may instead act as a nitrite reductase in the DNRA
pathway.

Vertical stratification of NO3
� reduction pathways in FLSB mats. The sigmoidal

pH profile measured in a lab-incubated white FLB mat (Fig. 2a) shows that different
biogeochemical processes drove a local pH minimum at around 1 mm depth (coinci-
dent with complete O2 reduction) and a local pH maximum at around 3 mm depth
(coincident with complete HS� oxidation). The shallow pH minimum is consistent with
the oxidation of intracellularly stored S0 using either O2 or NO3

� as the electron
acceptor, regardless of the NO3

� reduction pathway.

S0 � 1.5 O2 � H2O → SO4
2� � 4 H�

S0 � 0.75 NO3
� � 1.75 H2O → SO4

2� � 0.75 NH4
� � 0.5 H�

TABLE 2 Overview of nitrate reduction pathway genes predicted for representative large
sulfur bacteriaa

NirB NirS Nor Nos

"Orange Guaymas"

“Beggiatoa” sp. 
bin 4572_84
(wide white Guaymas)

NapNar-like(1)Nxr/Nar

(1) The predicted genes in the Nar-like putative operons are mostly annotated with other functions (e.g. DMSO reduction),  but
they are the only potential nitrate reductase genes found in the Thioploca ingrica genome.

(2) The Ca. Marithrix sessilis Nxr/Nar genes appear phylogenetically distinct from those of other genome-sequenced Beggiatoaceae 
(not shown).

* NirM was omitted here because a variety of cytochrome types were found in this position, depending on species. 

GHJI GHJI FDAGHBC BD DZLBCDEQ *        SMCFDLGHJE

DNRA DenitrificationNitrate reduction

Species

Guaymas Basin
FLSB

Beggiatoa alba

Ca. Marithrix sessilis
Green Canyon 246(2) 

Thioploca ingrica

Ca. Thiomargarita 
nelsonii bud S10

Other Beggiatoaceae

NO3
- --> NO2

- NO2
- --> NH4

+ NO2
- --> NO NO --> N2O N2O --> N2

aBlack squares indicate that gene candidates for an enzyme subunit were found, and white squares indicate that no gene candidates 
were found. See Materials and Methods for details about the genomes included in this table. 
See Table S2 in the supplemental material for ORF designations.
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50 µm  05 µm

Ca. Marithioploca araucae and environmental sequences 5

FR666858 clone AMV1058, Amon mud volcano, Nile Deep Sea Fan
4 Orange Guaymas Basin filaments, 1 Guaymas Basin clone5

Ca. Maribeggiatoa vulgaris and environmental sequences 3

Wide white Guaymas filaments4

54%

Ca. Thiomargarita nelsonii strs. 3

FR827866 Thiomargarita namibiensis, clone Ger002
63%

Ca. Parabeggiatoa communis 4

Ga0193926_14185 Narrow white Guaymas Basin filament

91%

Environmental sequences 5

52%

Thioploca ingrica strs.5

“Beggiatoa” spp., coral black band disease 2

Ca. Halobeggiatoa spp. and environmental sequences 11

Ca. Isobeggiatoa spp. 4

FJ875195 clone Ca2−329, salmon farm sediment, Calbuco Island, Chile

73%

Ca. Thiopilula aggregata 12

Ca. Marithrix sessilis and environmental sequences 13
KU942607.1 Ca. Marithrix sp. Green Canyon 246

FR666859 clone AMV346, Amon mud volcano, Nile Deep Sea Fan
FR670387 clone LSmat.B40, Eiffel Tower, Lucky Strike area, MAR

60%

FR847874 Ca. Marithrix sessilis, gray microbial mat, Barents Sea, Norway

92%

77%

HQ153887 Ca. Marithrix sessilis, Juan de Fuca Ridge 

Environmental sequences 4

59%

Environmental sequences 6

70%

GU117707 “Beggiatoa” sp. Arauama II, hypersaline lagoon, Brazil
AF110277 “Beggiatoa” sp. MS−81−6, Great Sippewissett Marsh
GU117706 “Beggiatoa” sp. Arauama I, hypersaline lagoon, Brazil

63%

FR717278 “Beggiatoa” sp. 35Flor, black band disease, Florida

60%

FR847887 clone HMW−S2670, microbial mat, Barents Sea, Norway

79%

FR847885 clone HMW−S2239, white microbial mat, Barents Sea, Norway

64%

HM598303 “Beggiatoa” sp. CSO1, shrimp culture pond sediment, India

54%

93%

EU919200 Ca. Allobeggiatoa halophila clone 1124, photosynthetic mat, Spain
Environmental sequences 5

CP012373 Beggiatoa leptomitiformis D−402
AF110274 Beggiatoa alba B18LD

Environmental sequences 2

AF110275 Beggiatoa sp. AA5A

65%

81%

75%

64%

Desulfovibrio spp. 4

0.10 Nodes with ≥ 95% bootstrap support

Numbers are shown for other nodes supported at ≥ 50%

a

b c

FIG 3 16S rRNA gene distance phylogeny of Guaymas Basin Beggiatoaceae (a). Species analyzed in Table 1 and others relevant to this
study are shown in boldface. The two morphologically distinct Guaymas filaments (orange-pigmented and wide white) form two separate

(Continued on next page)
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S0 � 1.2 NO3
� � 0.4 H2O → SO4

2� � 0.6 N2 � 0.8 H�

N2O accumulated most rapidly at this depth following the addition of acetylene (Fig.
2b), indicating that denitrification was most active there.

The deep pH maximum is consistent with HS� oxidation to either SO4
2� or S0 using

NO3
� as an electron acceptor, regardless of whether NO3

� was reduced to N2 or NH4
�:

HS� � 0.25 NO3
� � 1.5 H� → S0 � 0.25 NH4

� � 0.75 H2O

HS� � NO3
� � H� � H2O → SO4

2� � NH4
�

HS� � 0.4 NO3
� � 1.4 H� → S0 � 0.2 N2 � 1.2 H2O

HS� � 1.6 NO3
� � 0.6 H� → SO4

2� � 0.8 N2 � 0.8 H2O

Much less N2O was produced at this depth, indicating a limited role for denitrifica-
tion. Since the pH minimum and maximum were of similar magnitude, and DNRA and
denitrification produce a similar number of protons per NO3

� reduced (6 and 3.5,
respectively), it is probable that DNRA was the more important NO3

� reduction
pathway deep in the mat. Furthermore, given that white mats reduced more NO3

� to
N2 than to NH4

� overall (Fig. 1 and Table 1), it is likely that denitrification was the more
important pathway near the mat surface where maximum N2O production was ob-
served.

Using microsensors, we found that denitrification and DNRA were most active in
different geochemical and spatial niches within a white FLSB mat. We conclude that in
FLSB mats with vertical separation between the O2 and HS� depletion zones, more
FLSB filaments couple HS� oxidation to S0 with DNRA than denitrification in deeper
layers of the mat where HS� is present, and more filaments couple the oxidation of
internally stored S0 to SO4

2� with denitrification than DNRA near the surface of the mat
where HS� is absent. According to this model, the two NO3

� reduction pathways are
active simultaneously within a single mat but are most active at different depths.
Genetic evidence suggests that individual organisms of the Beggiatoaceae have the
potential to perform denitrification and DNRA (Table 2), but this remains to be
experimentally demonstrated for large vacuolated mat-forming FLSB, such as those
used in this study. Our data establish the physicochemical characteristics of a mat
environment and provide the physiological setting for differential gene expression.
Motile FLSB filaments travel between different redox zones (8) and may activate their
NO3

� reduction pathways at different times depending on their position within the mat
relative to O2, HS�, and pH gradients.

Controls of N2 versus NH4
� production in FLSB mats. The white mats performed

both DNRA and denitrification, but denitrification generally occurred at a higher rate.
In contrast, DNRA rates were much higher than denitrification rates in orange mats, and
evidence indicates that the orange FLSB filaments performed DNRA only. These trends
were reproducible across mats from different sampling locations in spite of between-
mat variability in absolute rates (Table 1). This physiological difference appears to
correlate with different habitat preferences and electron donor availability (Fig. 4). The
orange FLSB dominate at the centers of hydrothermal sediments, where HS� supply is
maximal and often reaches close to the surface (20). White filaments typically dominate
at the periphery of these regions, where hydrothermal activity and HS� fluxes are
attenuated. The resulting “fried-egg” pattern is consistently observed in Guaymas Basin
FLSB mats (21), indicating that these ecophysiological preferences are linked to these
genetically and morphologically distinct FLSB types in a consistent manner and do not

FIG 3 Legend (Continued)
clusters. Each cluster contains sequences obtained from different mats during different sampling campaigns. (b) Combined fluorescein
isothiocyanate (green) and Nile Red (red) staining of the white filaments (see Supplemental Methods for details) indicates the presence
of a large internal vacuole in each cell. Green stain shows the location of the cytoplasm, red stain shows lipid layers and droplets, and
yellow shows areas of overlap between green and red stains. The large unstained area in the center of each cell is a negative image of
the central aqueous vacuole. (c) Scanning electron microscopy of a manually opened white filament (see Supplemental Methods for
details) likewise showed that major parts of the biovolume of the filaments are empty, representing the internal vacuole.
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merely represent different gene expression patterns or behavioral adaptations in a
highly flexible population (20).

In hydrothermal environments, the balance between electron donor (HS�) and
electron acceptor (NO3

�) availability likely plays a key role in determining the end
product of NO3

� reduction, both within and between mat types (Fig. 4). DNRA
generates more energy per NO3

� reduced (26), making it more favorable when plenty
of HS� is available. The steeper HS� gradients beneath orange FLSB mats can cause
HS� to reach the sediment surface (20), where it may favor the orange filaments that
specialize in DNRA over the white filaments that maintain the ability to denitrify as well.
On the other hand, denitrification uses electrons more efficiently, requiring only 5
electrons to reduce one NO3

� compared with 8 electrons for DNRA (27). Therefore,
white mats may have an advantage where hydrothermal HS� fluxes are lower and
filaments must rely on stored electron donor (S0) pools at least some of the time.

This same mechanism may explain the observed spatial separation between deni-
trification and DNRA within the white FLSB mat (Fig. 4). Denitrification makes efficient
use of limited intracellular S0 supplies near the surface where NO3

� is freely available
in the seawater medium, while DNRA makes efficient use of limited stored NO3

� deeper
in the mat where abundant HS� is supplied by the sediment. An often-cited alternative
explanation is that denitrification is inhibited by HS� (28), making DNRA necessary in
its presence. However, Sørensen et al. (28) showed HS� inhibition of only the final
nitrous oxide reduction step of denitrification, not the process as a whole. Therefore,
denitrification may only be less efficient in the presence of HS�, making it more likely
to be outcompeted by the more energetically favorable process of DNRA. Indeed, we
observed a small amount of denitrification activity (N2O accumulation) deep in the
acetylene-amended laboratory-incubated white FLSB mat, demonstrating that denitri-
fication can function to a certain extent under sulfidic conditions, though DNRA was
clearly the dominant process here (Fig. 2).

Studies that aim to determine the environmental controls on the competition
between denitrification and DNRA tend to focus on this competition at the organismic
level, where different bacteria carry out each process separately (26, 27). The white FLSB
are extremely interesting in this context because the same organism carries out both
processes. Therefore, the observed differences in NO3

� reduction activity could not be
caused by between-organism differences in enzymes, metabolic pathways, or other
cellular processes. Instead, differences in NO3

� reduction activity must result from the

FIG 4 Conceptual diagram of a Guaymas Basin FLSB mat with an orange center and a white periphery,
surrounded by bare sediment (brown). The intensity of hydrothermal flow is represented by the density
of black arrows. They show more intense hydrothermal flow under the center of the mat where the
orange FLSB dominate and reduced hydrothermal flow under the mat periphery where white FLSB
dominate. Idealized oxygen, total sulfide, and pH gradients in sediment beneath the mat center and
periphery are displayed with arbitrary depth and concentration units. The purple and yellow zones show
the relative positions of the dominant NO3

� reduction pathways, denitrification and DNRA, respectively.
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up- and downregulation of the same enzyme systems within the same organism. Our
results suggest that the balance between electron donor and electron acceptor avail-
ability controls the switch between the denitrification and DNRA pathways, not just at
the level of between-organism competition (26, 27), but also at the even more
fundamental level of enzyme system regulation.

MATERIALS AND METHODS
Preparation of the filaments. Samples of white and orange FLSB mats were collected with push

cores from hydrothermal sediments of Guaymas Basin in the Gulf of California (Table S1 and Fig. S1)
during cruise AT37-06 with R/V Atlantis and deep-sea submersible DSV Alvin. Freshly recovered samples
were transferred to the ship’s cold room (4°C). FLSB mats were gently pulled off the tops of sediment
cores using a pipette and placed in 100-ml plastic beakers containing seawater. Some sediment adhered
to the filaments that, when left overnight, settled at the bottom of the beaker while the filaments
reformed a mat on top of it. The mat was transferred to another beaker containing fresh seawater and
allowed to settle again. This process was repeated several times to clean and enrich the filaments as
much as possible before they were used for experiments.

Controlling for FLSB-specific activity. In spite of this cleaning, a diversity of small microbial cells
usually remain adhered to the filaments, as demonstrated previously using a more meticulous cleaning
procedure for single filaments (12). To distinguish the activity of the FLSB from the small microorganisms
growing on the filaments (epibionts) in this study, we destroyed the large filaments mechanically while
leaving the small cells intact. After incubating precleaned intact FLSB mats for �20 h with different
treatments (see below), the mats were drawn into a 6-ml syringe through a needle (0.41 mm inner
diameter, 22 gauge) and reinjected with force into the incubation vial. This step was repeated three
times. Microscopic examination of the sample confirmed that the shear forces in the needle destroyed
all filaments. Most of the smaller associated cells likely remained intact, as evidenced by the nonzero
activities measured in the �12 h of incubation following this treatment. In another study (29), scientists
also employed a mechanical method (using a Potter-Elvehjem homogenizer) to destroy closely related
multicellular “Candidatus Marithioploca” filaments for the same purpose. Using fluorescence microscopy,
they observed that the wide filaments were destroyed by this treatment, while the majority of the
bacterial epibionts remained intact. By incubating first the intact FLSB mat with its associated bacteria
and then the crushed filaments under the same conditions, it was possible to directly compare the NO3

�

reduction activity of the whole mat community with that of the epibionts only, and to determine the
contribution of the FLSB filaments by subtraction. This strategy was employed in the two incubation
experiments described below.

A separate experiment was performed to determine whether this treatment also kills smaller marine
bacteria. Liquid medium (0.2 liters Difco marine broth 2216 culture medium amended with 3.5 g · liter�1

NaNO3) was inoculated with 0.5 ml of marine sediment and incubated at 25°C for 2 days, from which a
fresh bottle of the same medium was reinoculated and incubated for 24 h at 25°C. Six milliliters of this
culture was pulled 3 times through a 22-gauge syringe, as described above, and the rest was untreated.
From plate counting a dilution series on 1.5% agar plates of the same medium, we found 9.4 � 106

CFU · ml�1 in the treated suspension and 6.1 � 106 CFU · ml�1 in the untreated suspension. Thus, the
shear stress that destroyed the large FLSB filaments was insufficient to kill much smaller (�1 �m) bacteria
similar to the epibionts of the FLSB filaments.

[15N]NO3
� incubations. Precleaned white and orange FLSB mats were incubated separately in 50

�M [15N]NO3
� for 3 h, allowing individual filaments to take up the labeled substrate and store it in their

vacuoles. The mats were then rinsed twice with ice-cold surface seawater to remove the residual labeled
NO3

�. The resulting white and orange mats were each separated into three equal pieces and placed into
60-ml syringes such that each syringe contained 2 to 5 ml of mat material. This was done at two different
sampling locations (Table S1 and Fig. S1), so that a total of six orange and six white mat pieces were used
in these incubations. Syringes were filled to 60 ml total volume with N2-purged surface seawater that was
amended with unlabeled NO3

� to a final concentration of 50 �M. The seawater was aerated during the
transfer process such that oxygen concentrations were 100 to 200 �M throughout the incubations. Two
mats of each color type were given HS� addition treatments, in which syringes were injected with a
pH-neutralized HS� solution to a final concentration of 100 �M. One mat of each color type was given
an acetate addition treatment, in which a pH-neutralized acetic acid solution was added to each syringe
to a final concentration of 375 �M. Syringes were sealed with a three-way valve and incubated at 4°C in
the dark. The small number of treatment replicates was necessitated by a shortage of scientific supplies
available on the ship caused by customs problems in the host country. These treatments were intended
to illustrate whether both NO3

� reduction pathways were active across a range of seawater chemistries,
not to determine whether altering electron donor availability resulted in statistically significant differ-
ences in process rates.

Subsamples from each 60-ml syringe were collected after 0, 2.5 to 3.5, 7.5 to 8.5, and 18 to 20 h of
incubation. Prior to subsampling, the incubation syringes were mixed by inverting several times and then
left to settle upright with the three-way valve on top. Once the filaments had settled on the piston end,
a long needle was attached to the three-way valve perpendicular to the syringe, and 10.5 ml of the
overlying seawater was injected through this needle into the bottom of a 12-ml Exetainer (Labco, UK)
containing 1.5 ml of a saturated zinc acetate solution as fixative. During the first phase of the incubations
with the intact FLSB mats, all filaments stayed in the 60-ml syringe during subsampling. The Exetainers
were filled completely with no headspace, sealed, and inverted several times to stop all activity. After the
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final subsampling, the remaining seawater medium was removed until the FLSB filaments remained in
a minimal volume of 5 ml, before crushing the large FLSB filaments as described above. Of the resulting
suspension, 500 �l was pipetted into a microcentrifuge tube containing 150 �l of 6 N HCl and stored at
4°C for protein analysis. The 60-ml syringes were refilled with seawater medium, and the chemistry was
adjusted as described above to match the initial incubation conditions in each syringe. Four additional
subsamples were collected at 20 to 22.5, 22 to 24, 27.5 to 29.5, and 31 to 33 h of total incubation time.

The concentrations of argon, O2, 28N2, 29N2, and 30N2 in the Exetainers were measured using a
membrane inlet mass spectrometer (MIMS; GAM200, IPI). The MIMS signals were drift-corrected and
calibrated using instrument blank and aerated seawater signals. Excess 29N2 and 30N2 concentrations
were calculated relative to air as previously described (30). The total excess 15N concentration was
calculated according to the equation

�15N�ex � �29N2�ex � 2�30N2�ex

Argon concentrations tended to increase steadily throughout the incubations, indicating gas diffu-
sion across the polyethylene syringe wall. This leak also resulted in a net loss of [15N]N2 when
denitrification activity stopped. To account for this loss, the total excess 15N concentrations were
corrected for changes in argon concentration relative to the apparent argon saturation concentration
([Ar]app) according to the equation

�15N�Ar � �15N�ex��Ar�app � �Ar�min� ⁄ ��Ar�app � �Ar�i�
where [15N]Ar is the argon-corrected total excess 15N concentration, [15N]ex is the total excess 15N
concentration calculated according to equation 8, [Ar]min is the minimum argon concentration measured
during a set of samples, and [Ar]i is the argon concentration measured at the time point for which the
correction is being calculated. [Ar]app was estimated to be 9.4 �M by finding the highest value that
compensated for the maximum observed 15N loss. In general, this correction had a minor effect on the
higher denitrification rates with the intact FLSB filaments but accounted for the net loss of [15N]N2 after
destruction.

Following MIMS analysis, subsamples were treated with hypobromide to convert [15N]NH4
� into 29N2

and measured on a gas chromatogram-isotope ratio mass spectrometer (GC-IRMS) (30). Conversion was
consistently greater than 95%. Excess 29N2 and 30N2 concentrations were calculated relative to air, and
the total excess 15N concentration was calculated according to equation 8, as described above.

Protein content was measured using a Pierce BCA protein assay kit-reducing agent compatible
(catalog no. 23250; Thermo Fisher). The change in [15N]N2 and [15N]NH4

� concentrations between each
pair of time points ([15N]ti � [15N]ti � 1) was calculated and corrected for the changing incubation volume
(V, in liters) and protein content (P, in micrograms of protein), according to the equation

�15N � ��15N�ti � �15N�ti � 1� � 1,000 � V ⁄P

to produce Δ15N (nanomoles 15N per microgram of protein), the volume- and protein-normalized change
in 15N content. Total protein content was used as a proxy for mat biomass in these incubations. Following
filament destruction, the mat was homogenized throughout the seawater medium, resulting in biomass
loss due to subsampling. Therefore, rates were normalized to protein content to account for this loss of
mat biomass. Rates of [15N]N2 and [15N]NH4

� production were calculated as cumulative Δ15N versus time.
The time point immediately following filament destruction was not used in rate calculations because
concentrations were often disproportionately high relative to the following samples, possibly due to
incomplete mixing with the residual 15N from the first part of the incubation or due to carryover in the
sample needle. Due to the uncertainties related to the calculation of overall denitrification and DNRA
rates following the random isotope pairing principle (31) in the presence of considerable intracellular
storage of nitrate (32), we only report the 15N products in this study. Hence, the overall denitrification and
DNRA rates per protein could be several times higher than the �10 to 1,000 pmol N · (�g protein)�1 ·
h�1 reported here.

Microsensor measurements. A batch of white FLSB filaments survived the journey to the laboratory
in Bremen in a 100-ml plastic screw-cap cup. The filaments had formed a 2-cm-thick mat, which was used
for microsensor measurements. The temperature was maintained at 2°C, and the seawater overlying the
mat was very gently aerated and mixed via airflow through a Pasteur pipet (one bubble every 2 to 3 s).
Every other day, the water column was refreshed with artificial seawater (salinity, 3.5%) containing 50 �M
NO3

�. Microsensors for O2, N2O, and pH were constructed and calibrated as described previously (33–35).
The tip diameters were 10 �m for the O2 and pH sensors and 20 �m for the N2O sensor. Measurements
with the three sensors were done simultaneously. The depth at which each sensor touched the mat
surface was observed using a dissection microscope and carefully noted for later alignment of the
profiles. Experiments with acetylene, which inhibits N2O reductase (36) and allows N2O to accumulate
during denitrification, were performed by replacing 20% of the seawater medium with the same medium
that had been saturated with acetylene (washed to remove acetone). The overlying seawater was not
aerated or mixed during the acetylene experiment.

Phylogeny. The phylogenetic tree of Guaymas Beggiatoaceae was calculated in Arb by neighbor
joining with the Felsenstein distance correction (37, 38) and 1,000 bootstrap replicates. Only complete
or near-complete sequences were used and then filtered to include only positions with information for
all species and remove introns; the final alignment included 1,401 positions. The 16S rRNA genes for the
orange Beggiatoaceae group include IMG locus tags BOGUAY_3612 and Ga0193933_102039 from a
metagenome-reconstructed genome (16), PCR amplicons with GenBank accession numbers JN793553
and JN793556.1 from individual cleaned filaments (20), and an amplicon with GenBank accession number
KP091103 from mat-covered sediment (39). The accession numbers for the large white Beggiatoaceae
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include IMG locus tag Ga0193912_101714 from a metagenome-reconstructed genome (16), PCR ampli-
cons with GenBank accession numbers JN793554.1 and JN793557 from individual cleaned filaments (20),
and an amplicon with GenBank accession number KJ569660 from mat-covered sediment (40). Four
Desulfovibrio sequences were used to root the tree. The incomplete 16S rRNA sequence of Beggiatoaceae
bin 4572_84 (Ga0193912_101714) (16) is 100% identical to three of the four sequences in the group of
other wide white FLSB over its 384-nucleotide length and affiliates with them in trees calculated from
truncated 16S rRNA gene sequences (not shown).

Genomic analysis. To evaluate whether denitrification and DNRA can cooccur in the same FLSB, the
following publicly available genomes from the family Beggiatoaceae were gathered: orange-pigmented
and unpigmented (“wide white”) Guaymas Beggiatoaceae, “Candidatus Thiomargarita nelsonii,” “Candi-
datus Marithrix,” Thioploca ingrica, Beggiatoa alba, and Beggiatoa leptomitiformis. These were considered
complete enough (�85% genome completeness) to assess their NO3

� reduction pathway genes. Gene
candidates were identified by keyword and BLASTP searches of IMG/ER (41).

The two Guaymas Basin data sets (orange and white filaments) were produced from microbial mats
overlying hydrothermally influenced sediments in Guaymas Basin (Mexico). The bin ex4572_84_Beggiatoa
genome (wide white filaments) was assembled from a sediment metagenome from combined 0- to 3-cm
and 12- to 15-cm-depth intervals and is estimated to be 86% complete (16) (Fig. 3). The “Orange
Guaymas” sequence was obtained from a single cleaned filament (13, 23) and is estimated to be 98%
complete (18). Beggiatoa alba B18LDT is a nonvacuolated strain isolated from freshwater rice paddy
sediment (42, 43). Its genome is estimated to be 100% complete by single-copy gene complement (44)
but is not closed, consisting of one long and two short linear contigs. Thioploca ingrica grows as sheathed
trichomes (filaments) lacking large vacuoles; the genome sequence was obtained from the metagenome
of multiple trichomes collected from Lake Okotanpe (Japan) sediment (14) and is closed. The “Ca.
Thiomargarita nelsonii” bud S10 genome was obtained from a budding vacuolated cell attached to a
gastropod shell at the Hydrate Ridge methane seep (OR, USA) (44) and is estimated to be 87% complete.
The “Ca. Marithrix” Green Canyon 246 genome was sequenced from a single filament (cut into segments)
collected from sediments near deep-sea brines in the Gulf of Mexico and is estimated to be 94%
complete (15).
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