56 research outputs found
Periodic orbit quantization of a Hamiltonian map on the sphere
In a previous paper we introduced examples of Hamiltonian mappings with phase
space structures resembling circle packings. It was shown that a vast number of
periodic orbits can be found using special properties. We now use this
information to explore the semiclassical quantization of one of these maps.Comment: 23 pages, REVTEX
Salmon for Terrestrial Protected areas
Although managers safeguard protected areas for migratory species, little consideration has been given to how migratory species might benefit parks. Additionally, whereas land‐sea connections are considered in management of protected areas, most effort has focused on reducing negative “downstream” processes. Here, we offer a proposal to promote positive “upstream” processes by safeguarding the seasonal pulse of marine nutrients imported into freshwater and riparian ecosystems by spawning migrations of Pacific salmon. Currently, high rates of fishing limit this important contribution to species and processes that terrestrial parks were designed to protect. Accordingly, we propose limiting exploitation in areas and periods through which salmon runs bound for terrestrial protected areas can migrate. Best suited for less commercially valuable but relatively abundant and widespread pink and chum salmon (O. gorbuscha and keta), our proposal thus considers ecosystem and societal needs for salmon. We conclude by outlining strategies to overcome socio‐economic barriers to implementation
Evaluating anthropogenic threats to endangered killer whales to inform effective recovery plans
Understanding cumulative effects of multiple threats is key to guiding effective management to conserve endangered species. The critically endangered, Southern Resident killer whale population of the northeastern Pacific Ocean provides a data-rich case to explore anthropogenic threats on population viability. Primary threats include: limitation of preferred prey, Chinook salmon; anthropogenic noise and disturbance, which reduce foraging efficiency; and high levels of stored contaminants, including PCBs. We constructed a population viability analysis to explore possible demographic trajectories and the relative importance of anthropogenic stressors. The population is fragile, with no growth projected under current conditions, and decline expected if new or increased threats are imposed. Improvements in fecundity and calf survival are needed to reach a conservation objective of 2.3% annual population growth. Prey limitation is the most important factor affecting population growth. However, to meet recovery targets through prey management alone, Chinook abundance would have to be sustained near the highest levels since the 1970s. The most optimistic mitigation of noise and contaminants would make the difference between a declining and increasing population, but would be insufficient to reach recovery targets. Reducing acoustic disturbance by 50% combined with increasing Chinook by 15% would allow the population to reach 2.3% growth
Using Grizzly Bears to Assess Harvest-Ecosystem Tradeoffs in Salmon Fisheries
Using grizzly bears as surrogates for “salmon ecosystem” function, the authors develop a generalizable ecosystem-based management framework that enables decision-makers to quantify ecosystem-harvest tradeoffs between wild and human recipients of natural resources like fish
- …