2,551 research outputs found

    Simultaneous multi-band detection of Low Surface Brightness galaxies with Markovian modelling

    Get PDF
    We present an algorithm for the detection of Low Surface Brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings - typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. To assess the robustness of our method, the method was applied to a set of 18 B and I band images (covering 1.3 square degrees in total) of the Virgo cluster. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (i) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (ii) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20% more mock LSB galaxies and ~40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is reached for sources with r_e > 3" at a mean surface brightness level of mu_g=27.7 mag/arcsec^2 and a central surface brightness of mu^0 g=26.7 mag/arcsec^2. About 10% of the false positives are artifacts, the rest being background galaxies. We have found our method to be complementary to the application of matched filters and an optimized use of SExtractor, and to have the following advantages: it is scale-free, can be applied simultaneously to several bands, and is well adapted for crowded regions on the sky.Comment: 39 pages, 18 figures, accepted for publication in A

    Chandra X-Ray Spectroscopy Of The Very Early O Supergiant HD 93129A: Constraints On Wind Shocks And The Mass-Loss Rate

    Get PDF
    We present an analysis of both the resolved X-ray emission-line profiles and the broad-band X-ray spectrum of the O-2 If* star HD 93129A, measured with the Chandra High Energy Transmission Grating Spectrometer ( HETGS). This star is among the earliest and most massive stars in the Galaxy, and provides a test of the embedded wind-shock scenario in a very dense and powerful wind. A major new result is that continuum absorption by the dense wind is the primary cause of the hardness of the observed X-ray spectrum, while intrinsically hard emission from colliding wind shocks contributes less than 10 per cent of the X-ray flux. We find results consistent with the predictions of numerical simulations of the line-driving instability, including line broadening indicating an onset radius of X-ray emission of several tenths of R-*. Helium-like forbidden-to-intercombination line ratios are consistent with this onset radius, and inconsistent with being formed in a wind-collision interface with the star\u27s closest visual companion at a distance of 100 au. The broad-band X-ray spectrum is fitted with a dominant emission temperature of just kT = 0.6 keV along with significant wind absorption. The broad-band wind absorption and the line profiles provide two independent measurements of the wind mass-loss rate:. M = 5.2(-1.5)(+1.8) x 10(-6) and 6.8(-2.2)(+2.8) x 10(-6) M-circle dot yr(-1), respectively. This is the first consistent modelling of the X-ray line-profile shapes and broad-band X-ray spectral energy distribution in a massive star, and represents a reduction of a factor of 3-4 compared to the standard H alpha mass-loss rate that assumes a smooth wind

    The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-Mass Early-Type Galaxies from Gemini GMOS-IFU Spectroscopy

    Full text link
    We present Gemini GMOS-IFU data of eight compact low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyse their stellar kinematics, stellar population, and present two-dimensional maps of these properties covering the central 5"x 7" region. We find a large variety of kinematics: from non- to highly-rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally-concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the lambdaR parameter and find six fast-rotators and two slow-rotators, one having a thin counter-rotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M>1010M>10^{10}\Msun) ETGs from the A3D sample. The compact low-mass ETGs in our sample are located in high density regions, often close to a massive galaxy and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.Comment: Accepted in ApJ, 19 pages, 10 figure

    Treatment outcomes for patients with multidrug-resistant tuberculosis in post-earthquake Port-au-Prince, Haiti.

    Get PDF
    We report outcomes and 12-month survival for the first cohort of patients to undergo multidrug-resistant tuberculosis (MDR-TB) treatment after the earthquake in Haiti. From March 3, 2010 to March 28, 2013, 110 patients initiated treatment of laboratory-confirmed MDR-TB at the Groupe Haïtien d'Etude du Sarcome de Kaposi et des Infections Opportunistes (GHESKIO) Center in Port-au-Prince, Haiti. Twenty-seven patients (25%) were human immunodeficiency virus (HIV)-positive. As of October 31, 2013, 95 (86%) patients were either cured or alive on treatment, 4 (4%) patients defaulted, and 11 (10%) patients died. Culture conversion occurred by 30 days in 14 (13%) patients, 60 days in 49 (45%) patients, and 90 days in 81 (74%) patients. The probabilities of survival to 12 months were 96% (95% confidence interval [95% CI] = 89-99) and 85% (95% CI = 64-94) for HIV-negative and -positive patients, respectively. Despite adverse conditions, outcomes for patients with MDR-TB are highly encouraging. Major efforts are underway to scale up community directly observed therapy and expand care to other regions of Haiti

    The Next Generation Virgo Cluster Survey. VII. The intrinsic shapes of low-luminosity galaxies in the core of the Virgo cluster, and a comparison with the Local Group

    Full text link
    (Abridged) We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo cluster using deep imaging obtained as part of the NGVS. We build a sample of nearly 300 red-sequence cluster members in the yet unexplored 14<Mg<8-14 < M_{g} < -8 magnitude range. The observed distribution of apparent axis ratios is then fit by families of triaxial models with normally-distributed intrinsic ellipticities and triaxialities. We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity E=0.43, and a mean triaxiality T=0.16. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. We additionally attempt a study of the intrinsic shapes of Local Group satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity E=0.51, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. We finally compare the intrinsic shapes of NGVS low-mass galaxies with samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides--but there is a hint that objects may be slightly rounder in denser environments. The comparable flattening distributions of low-luminosity galaxies that have experienced very different degrees of environmental effects suggests that internal processes are the main drivers of galaxy structure at low masses--with external mechanisms playing a secondary role.Comment: Accepted to ApJ. 18 pages, 12 figure

    Mapping between dissipative and Hamiltonian systems

    Full text link
    Theoretical studies of nonequilibrium systems are complicated by the lack of a general framework. In this work we first show that a transformation introduced by Ao recently (J. Phys. A {\bf 37}, L25 (2004)) is related to previous works of Graham (Z. Physik B {\bf 26}, 397 (1977)) and Eyink {\it et al.} (J. Stat. Phys. {\bf 83}, 385 (1996)), which can also be viewed as the generalized application of the Helmholtz theorem in vector calculus. We then show that systems described by ordinary stochastic differential equations with white noise can be mapped to thermostated Hamiltonian systems. A steady-state of a dissipative system corresponds to the equilibrium state of the corresponding Hamiltonian system. These results provides a solid theoretical ground for corresponding studies on nonequilibrium dynamics, especially on nonequilibrium steady state. The mapping permits the application of established techniques and results for Hamiltonian systems to dissipative non-Hamiltonian systems, those for thermodynamic equilibrium states to nonequilibrium steady states. We discuss several implications of the present work.Comment: 18 pages, no figure. final version for publication on J. Phys. A: Math & Theo
    corecore