5,043 research outputs found
A study of the influence of the gauge group on the Dyson-Schwinger equations for scalar-Yang-Mills systems
The particular choice of the gauge group for Yang-Mills theory plays an
important role when it comes to the influence of matter fields. In particular,
both the chosen gauge group and the representation of the matter fields yield
structural differences in the quenched case. Especially, the qualitative
behavior of the Wilson potential is strongly dependent on this selection.
Though the algebraic reasons for this observation is clear, it is far from
obvious how this behavior can be described besides using numerical simulations.
Herein, it is investigated how the group structure appears in the
Dyson-Schwinger equations, which as a hierarchy of equations for the
correlation functions have to be satisfied. It is found that there are
differences depending on both the gauge group and the representation of the
matter fields. This provides insight into possible truncation schemes for
practical calculations using these equations.Comment: 47 page
Inertial waves and modes excited by the libration of a rotating cube
We report experimental measurements of the flow in a cubic container
submitted to a longitudinal libration, i.e. a rotation modulated in time.
Velocity fields in a vertical and a horizontal plane are measured in the
librating frame using a corotating particle image velocimetry system. When the
libration frequency is smaller than twice the mean rotation rate
, inertial waves can propagate in the interior of the fluid. At
arbitrary excitation frequencies , the oscillating flow
shows two contributions: (i) a basic flow induced by the libration motion, and
(ii) inertial wave beams propagating obliquely upward and downward from the
horizontal edges of the cube. In addition to these two contributions, inertial
modes may also be excited at some specific resonant frequencies. We
characterize in particular the resonance of the mode of lowest order compatible
with the symmetries of the forcing, noted [2,1,+]. By comparing the measured
flow fields to the expected inviscid inertial modes computed numerically
[L.R.M. Maas, Fluid Dyn. Res. \textbf{33}, 373 (2003)], we show that only a
subset of inertial modes, matching the symmetries of the forcing, can be
excited by the libration.Comment: Phys. Fluids (in press
Circadian Clocks:Evolution in the Shadows
SummaryAs scientists, we strive for highly controlled conditions. The real world, however, is noisy. Complex networks are a coping mechanism for an erratic environment
Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)
We study a gauge invariant order parameter for deconfinement and the chiral
condensate in SU(2) and SU(3) Yang-Mills theory in the vicinity of the
deconfinement phase transition using the Landau gauge quark and gluon
propagators. We determine the gluon propagator from lattice calculations and
the quark propagator from its Dyson-Schwinger equation, using the gluon
propagator as input. The critical temperature and a deconfinement order
parameter are extracted from the gluon propagator and from the dependency of
the quark propagator on the temporal boundary conditions. The chiral transition
is determined using the quark condensate as order parameter. We investigate
whether and how a difference in the chiral and deconfinement transition between
SU(2) and SU(3) is manifest.Comment: 15 pages, 9 figures. For clarification one paragraph and two
references added in the introduction and two sentences at the end of the
first and last paragraph of the summary. Appeared in EPJ
Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators
While the first binary post-AGB stars were serendipitously discovered, the
distinct characteristics of their Spectral Energy Distribution (SED) allowed us
to launch a more systematic search for binaries. We selected post-AGB objects
which show a broad dust excess often starting already at H or K, pointing to
the presence of a gravitationally bound dusty disc in the system. We started a
very extensive multi-wavelength study of those systems and here we report on
our radial velocity and photometric monitoring results for six stars of early F
type, which are pulsators of small amplitude. To determine the radial velocity
of low signal-to-noise time-series, we constructed dedicated auto-correlation
masks. The radial velocity variations were subjected to detailed analysis to
differentiate between pulsational variability and variability due to orbital
motion. Finally orbital minimalisation was performed to constrain the orbital
elements. All of the six objects are binaries, with orbital periods ranging
from 120 to 1800 days. Five systems have non-circular orbits. The mass
functions range from 0.004 to 0.57 solar mass and the companions are likely
unevolved objects of (very) low initial mass. We argue that these binaries must
have been subject to severe binary interaction when the primary was a cool
supergiant. Although the origin of the circumstellar disc is not well
understood, the disc is generally believed to be formed during this strong
interaction phase. The eccentric orbits of these highly evolved objects remain
poorly understood. With the measured orbits and mass functions we conclude that
the circumbinary discs seem to have a major impact on the evolution of a
significant fraction of binary systems.Comment: 13 pages, 15 figures, accepted for Astronomy and Astrophysic
Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2
We report on a measurement of the parity-violating asymmetry in the
scattering of longitudinally polarized electrons on unpolarized protons at a
of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o.
Using a large acceptance fast PbF_2 calorimeter with a solid angle of
\Delta\Omega = 0.62 sr the A4 experiment is the first parity violation
experiment to count individual scattering events. The measured asymmetry is
A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model
expectation assuming no strangeness contributions to the vector form factors is
. The difference is a direct measurement of the
strangeness contribution to the vector form factors of the proton. The
extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2
= 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200
Between-centre differences and treatment effects in randomized controlled trials: A case study in traumatic brain injury
BACKGROUND: In Traumatic Brain Injury (TBI), large between-centre differences in outcome exist and many clinicians believe that such differences influence estimation of the treatment effect in randomized controlled trial (RCTs). The aim of this study was to assess the influence of between-centre differences in outcome on the estimated treatment effect in a large RCT in TBI. METHODS: We used data from the MRC CRASH trial on the efficacy of corticosteroid infusion in patients with TBI. We analyzed the effect of the treatment on 14 day mortality with fixed effect logistic regression. Next we used random effects logistic regression with a random intercept to estimate the treatment effect taking into account between-centre differences in outcome. Between-centre differences in outcome were expressed with a 95% range of odds ratios (OR) for centres compared to the average, based on the variance of the random effects (tau2). A random effects logistic regression model with random slopes was used to allow the treatment effect to vary by centre. The variation in treatment effect between the centres was expressed in a 95% range of the estimated treatment ORs. RESULTS: In 9978 patients from 237 centres, 14-day mortality was 19.5%. Mortality was higher in the treatment group (OR = 1.22, p = 0.00010). Using a random effects model showed large between-centre differences in outcome (95% range of centre effects: 0.27- 3.71), but did not substantially change the estimated treatment effect (OR = 1.24, p = 0.00003). There was limited, although statistically significant, between-centre variation in the treatment effect (OR = 1.22, 95% treatment OR range: 1.17-1.26). CONCLUSION: Large between-centre differences in outcome do not necessarily affect the estimated treatment effect in RCTs, in contrast to current beliefs in the clinical area of TBI
On the gauge boson's properties in a candidate technicolor theory
The technicolor scenario replaces the Higgs sector of the standard model with
a strongly interacting sector. One candidate for a realization of such a sector
is two-technicolor Yang-Mills theory coupled to two degenerate flavors of
adjoint, massless techniquarks. Using lattice gauge theory the properties of
the technigluons in this scenario are investigated as a function of the
techniquark mass towards the massless limit. For that purpose the minimal
Landau gauge two-point and three-point correlation functions are determined,
including a detailed systematic error analysis. The results are, within the
relatively large systematic uncertainties, compatible with a behavior very
similar to QCD at finite techniquark mass. However, the limit of massless
techniquarks exhibits features which could be compatible with a
(quasi-)conformal behavior.Comment: 27 pages, 17 figures, 1 table; v2: persistent notational error
corrected, some minor modification
Resolving the compact dusty discs around binary post-AGB stars using N-band interferometry
We present the first mid-IR long baseline interferometric observations of the
circumstellar matter around binary post-AGB stars. Two objects, SX Cen and HD
52961, were observed using the VLTI/MIDI instrument during Science
Demonstration Time. Both objects are known binaries for which a stable
circumbinary disc is proposed to explain the SED characteristics. This is
corroborated by our N-band spectrum showing a crystallinity fraction of more
than 50 % for both objects, pointing to a stable environment where dust
processing can occur. Surprisingly, the dust surrounding SX Cen is not resolved
in the interferometric observations providing an upper limit of 11 mas (or 18
AU at the distance of this object) on the diameter of the dust emission. This
confirms the very compact nature of its circumstellar environment. The dust
emission around HD 52961 originates from a very small but resolved region,
estimated to be ~ 35 mas at 8 micron and ~ 55 mas at 13 micron. These results
confirm the disc interpretation of the SED of both stars. In HD 52961, the dust
is not homogeneous in its chemical composition: the crystallinity is clearly
concentrated in the hotter inner region. Whether this is a result of the
formation process of the disc, or due to annealing during the long storage time
in the disc is not clear.Comment: 12 pages, 10 figures, accepted for publication in A &
- …