1,496 research outputs found

    Do reciprocal relationships between academic workload and self-regulated learning predict medical freshmen's achievement? A longitudinal study on the educational transition from secondary school to medical school

    Get PDF
    One of the most important factors that makes the transition from secondary school to medical school challenging is the inability to put in the study time that a medical school curriculum demands. The implementation of regulated learning is essential for students to cope with medical course environment and succeed. This study aimed to investigate the reciprocal relationships between self-regulated learning skills (SRLS) and academic workload (AW) across secondary school to medical school transition. Freshmen enrolled in medical school (N = 102) completed questionnaires at the beginning and at the end of their academic year, assessing AW (measured as study time hours and perceived workload), SRLS (planning and strategies for learning assessment, motivation and action to learning and self-directedness) and academic achievement. An exploratory factor analysis (EFA) and a longitudinal path analysis were performed. According to the EFA, study time and perceived workload revealed two factors of AW: students who had a high perceived workload also demonstrated increased study time (tandem AW); and those who had a low perceived workload also demonstrated increased study time (inverse AW). Only a longitudinal relationship between SRLS and AW was found in the path analysis: prior self-directedness was related to later tandem AW. Moreover, success during the first year of medical school is dependent on exposure to motivation, self-directedness and high study time without overload during secondary school and medical school, and prior academic achievement. By better understanding these relationships, teachers can create conditions that support academic success during the first year medical school

    Preliminary results using a P300 brain-computer interface speller: a possible interaction effect between presentation paradigm and set of stimuli

    Get PDF
    Fernåndez-Rodríguez Á., Medina-Juliå M.T., Velasco-Álvarez F., Ron-Angevin R. (2019) Preliminary Results Using a P300 Brain-Computer Interface Speller: A Possible Interaction Effect Between Presentation Paradigm and Set of Stimuli. In: Rojas I., Joya G., Catala A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, vol 11506. Springer, ChamSeveral proposals to improve the performance controlling a P300-based BCI speller have been studied using the standard row-column presentation (RCP) par-adigm. However, this paradigm could not be suitable for those patients with lack of gaze control. To solve that, the rapid serial visual presentation (RSVP) para-digm, which presents the stimuli located in the same position, has been proposed in previous studies. Thus, the aim of the present work is to assess if a stimuli set of pictures that improves the performance in RCP, could also improve the per-formance in a RSVP paradigm. Six participants have controlled four conditions in a calibration task: letters in RCP, pictures in RCP, letters in RSVP and pictures in RSVP. The results showed that pictures in RCP obtained the best accuracy and information transfer rate. The improvement effect given by pictures was greater in the RCP paradigm than in RSVP. Therefore, the improvements reached under RCP may not be directly transferred to the RSVP.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech

    Fast flowing populations are not well mixed

    Get PDF
    In evolutionary dynamics, well-mixed populations are almost always associated with all-to-all interactions; mathematical models are based on complete graphs. In most cases, these models do not predict fixation probabilities in groups of individuals mixed by flows. We propose an analytical description in the fast-flow limit. This approach is valid for processes with global and local selection, and accurately predicts the suppression of selection as competition becomes more local. It provides a modelling tool for biological or social systems with individuals in motion.Comment: 19 pages, 8 figure

    Different reactions to adverse neighborhoods in games of cooperation

    Get PDF
    In social dilemmas, cooperation among randomly interacting individuals is often difficult to achieve. The situation changes if interactions take place in a network where the network structure jointly evolves with the behavioral strategies of the interacting individuals. In particular, cooperation can be stabilized if individuals tend to cut interaction links when facing adverse neighborhoods. Here we consider two different types of reaction to adverse neighborhoods, and all possible mixtures between these reactions. When faced with a gloomy outlook, players can either choose to cut and rewire some of their links to other individuals, or they can migrate to another location and establish new links in the new local neighborhood. We find that in general local rewiring is more favorable for the evolution of cooperation than emigration from adverse neighborhoods. Rewiring helps to maintain the diversity in the degree distribution of players and favors the spontaneous emergence of cooperative clusters. Both properties are known to favor the evolution of cooperation on networks. Interestingly, a mixture of migration and rewiring is even more favorable for the evolution of cooperation than rewiring on its own. While most models only consider a single type of reaction to adverse neighborhoods, the coexistence of several such reactions may actually be an optimal setting for the evolution of cooperation.Comment: 12 pages, 5 figures; accepted for publication in PLoS ON

    Coherent multi-flavour spin dynamics in a fermionic quantum gas

    Full text link
    Microscopic spin interaction processes are fundamental for global static and dynamical magnetic properties of many-body systems. Quantum gases as pure and well isolated systems offer intriguing possibilities to study basic magnetic processes including non-equilibrium dynamics. Here, we report on the realization of a well-controlled fermionic spinor gas in an optical lattice with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived intrinsic spin oscillations and investigate the transition from two-body to many-body dynamics. The latter results in a spin-interaction driven melting of a band insulator. Via an external magnetic field we control the system's dimensionality and tune the spin oscillations in and out of resonance. Our results open new routes to study quantum magnetism of fermionic particles beyond conventional spin 1/2 systems.Comment: 9 pages, 5 figure

    Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation Rate of an Evolutionary Algorithm

    Full text link
    It is well known that evolutionary algorithms (EAs) achieve peak performance only when their parameters are suitably tuned to the given problem. Even more, it is known that the best parameter values can change during the optimization process. Parameter control mechanisms are techniques developed to identify and to track these values. Recently, a series of rigorous theoretical works confirmed the superiority of several parameter control techniques over EAs with best possible static parameters. Among these results are examples for controlling the mutation rate of the (1+λ)(1+\lambda)~EA when optimizing the OneMax problem. However, it was shown in [Rodionova et al., GECCO'19] that the quality of these techniques strongly depends on the offspring population size λ\lambda. We introduce in this work a new hybrid parameter control technique, which combines the well-known one-fifth success rule with Q-learning. We demonstrate that our HQL mechanism achieves equal or superior performance to all techniques tested in [Rodionova et al., GECCO'19] and this -- in contrast to previous parameter control methods -- simultaneously for all offspring population sizes λ\lambda. We also show that the promising performance of HQL is not restricted to OneMax, but extends to several other benchmark problems.Comment: To appear in the Proceedings of Parallel Problem Solving from Nature (PPSN'2020

    Quantum Simulation of Tunneling in Small Systems

    Full text link
    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution. We show that physically interesting simulations of tunneling using 2 qubits (i.e. on 4 lattice point grids) may be performed with 40 single and two-qubit gates. Approximately 70 to 140 gates are needed to see interesting tunneling dynamics in three-qubit (8 lattice point) simulations.Comment: 4 pages, 2 figure

    The Circum-Galactic Medium of Massive Spirals. II. Probing the Nature of Hot Gaseous Halo around the Most Massive Isolated Spiral Galaxies

    Get PDF
    We present the analysis of the XMM-Newton data of the Circum-Galactic Medium of MASsive Spirals (CGM-MASS) sample of six extremely massive spiral galaxies in the local universe. All the CGM-MASS galaxies have diffuse X-ray emission from hot gas detected above the background extending \sim (30\mbox{--}100)\,\mathrm{kpc} from the galactic center. This doubles the existing detection of such extended hot CGM around massive spiral galaxies. The radial soft X-ray intensity profile of hot gas can be fitted with a ÎČ-function, with the slope typically in the range of \beta =0.35\mbox{--}0.55. This range, as well as those ÎČ values measured for other massive spiral galaxies, including the Milky Way (MW), are in general consistent with X-ray luminous elliptical galaxies of similar hot gas luminosity and temperature, and with those predicted from a hydrostatic-isothermal gaseous halo. Hot gas in such a massive spiral galaxy tends to have temperature comparable to its virial value, indicating the importance of gravitational heating. This is in contrast to lower mass galaxies, where hot gas temperature tends to be systematically higher than the virial one. The ratio of the radiative cooling to free fall timescales of hot gas is much larger than the critical value of ~10 throughout the entire halos of all the CGM-MASS galaxies, indicating the inefficiency of gas cooling and precipitation in the CGM. The hot CGM in these massive spiral galaxies is thus most likely in a hydrostatic state, with the feedback material mixed with the CGM, instead of escaping out of the halo or falling back to the disk. We also homogenize and compare the halo X-ray luminosity measured for the CGM-MASS galaxies and other galaxy samples and discuss the "missing" galactic feedback detected in these massive spiral galaxies

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    Are non-responders in a quitline evaluation more likely to be smokers?

    Get PDF
    BACKGROUND: In evaluation of smoking cessation programs including surveys and clinical trials the tradition has been to treat non-responders as smokers. The aim of this paper is to assess smoking behaviour of non-responders in an evaluation of the Swedish national tobacco cessation quitline a nation-wide, free of charge service. METHODS: A telephone interview survey with a sample of people not participating in the original follow-up. The study population comprised callers to the Swedish quitline who had consented to participate in a 12 month follow-up but had failed to respond. A sample of 84 (18% of all non-responders) was included. The main outcome measures were self-reported smoking behaviour at the time of the interview and at the time of the routine follow-up. Also, reasons for not responding to the original follow-up questionnaire were assessed. For statistical comparison between groups we used Fischer's exact test, odds ratios (OR) and 95% confidence intervals (CI) on proportions and OR. RESULTS: Thirty-nine percent reported to have been smoke-free at the time they received the original questionnaire compared with 31% of responders in the original study population. The two most common reasons stated for not having returned the original questionnaire was claiming that they had returned it (35%) and that they had not received the questionnaire (20%). Non-responders were somewhat younger and were to a higher degree smoke-free when they first called the quitline. CONCLUSION: Treating non-responders as smokers in smoking cessation research may underestimate the true effect of cessation treatment
    • 

    corecore