1,252 research outputs found
Nucleon-nucleon momentum correlation function for light nuclei
Nucleon-nucleon momentum correlation function have been presented for nuclear
reactions with neutron-rich or proton-rich projectiles using a nuclear
transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model.
The relationship between the binding energy of projectiles and the strength of
proton-neutron correlation function at small relative momentum has been
explored, while proton-proton correlation function shows its sensitivity to the
proton density distribution. Those results show that nucleon-nucleon
correlation function is useful to reflect some features of the neutron- or
proton-halo nuclei and therefore provide a potential tool for the studies of
radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body
Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in
Nucl. Phys.
Scaling of anisotropy flows in intermediate energy heavy ion collisions
Anisotropic flows (, and ) of light nuclear clusters are
studied by a nucleonic transport model in intermediate energy heavy ion
collisions. The number-of-nucleon scalings of the directed flow () and
elliptic flow () are demonstrated for light nuclear clusters. Moreover,
the ratios of of nuclear clusters show a constant value of 1/2
regardless of the transverse momentum. The above phenomena can be understood by
the coalescence mechanism in nucleonic level and are worthy to be explored in
experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus
Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the
proceeding issue in Nuclear Physics
Azimuthal asymmetry of direct photons in intermediate energy heavy-ion collisions
Hard photon emitted from energetic heavy ion collisions is of very
interesting since it does not experience the late-stage nuclear interaction,
therefore it is useful to explore the early-stage information of matter phase.
In this work, we have presented a first calculation of azimuthal asymmetry,
characterized by directed transverse flow parameter and elliptic asymmetry
coefficient , for proton-neutron bremsstrahlung hard photons in
intermediate energy heavy-ion collisions. The positive and negative
of direct photons are illustrated and they seem to be anti-correlated to the
corresponding free proton's flow.Comment: 7 pages, 4 figures; accepted by Physics Letters
Experimental Study and Finite Element Analysis of Critical Stresses of Reinforced Thermoplastic Pipes under Various Loads
In this paper, reinforced thermoplastic pipes (RTP) were studied under various loads. A total of five groups of specimens were designed to study the mechanical properties of RTPs under internal pressure, bending, a combination of internal pressure and bending moment, external pressure, and tension. This study obtained the bursting pressure of RTPs under internal pressure, the minimum bending radius under the bending moment, and the failure pressure under external pressure. At the same time, the mechanical properties of RTPs under various loads were analyzed using the finite element analysis. Analytical results agree well with the experimental ones. The finite element model established in this paper can be used for further research on the mechanical properties of RTPs
Response surface optimisation of vertical axis wind turbine at low wind speeds
The Vertical Axis Wind Turbines (VAWTs) have an increasing global market and this emphasis the need for to improve the performance of VAWTs, especially at relatively low wind speed. This paper utilises the Response Surface methodology to optimise the performance of a VAWT. A three bladed VAWT configuration was considered with a NACA0015 profile. Three significant input parameters were selected including the tip speed ratio, the turbine solidity, and the pitch angle. An extended range of each input parameter was chosen in order to gain a good insight into how these input parameters affect the performance of the VAWT. The high-fidelity Computational Fluid Dynamics (CFD) simulations were carried out for the modelling of the turbine. The use of the Response Surface Optimisation based on Multi-Objective Genetic Algorithm (MOGA) along with the CFD simulations is found to be useful in the selection of the optimal design of VAWT. Moreover, the 3D aspects of the VAWT geometry are investigated and these include the turbine aspect ratio and the effect of the blade tip geometry. The implementation of an optimised winglet at the tip of the turbine blades is found to provide a significant enhancement of the cycle averaged power coefficient, especially at low aspect ratios
Understanding excitation energy transfer in metalloporphyrin heterodimers with different linkers, bonding structures, and geometries through stimulated X-ray Raman spectroscopy
We present simulations of stimulated X-ray Raman (SXRS) signals from covalent porphyrin heterodimers with different linkers, chemical bonding structures and geometries. The signals are interpreted in terms of valence electron wavepacket motion. One- and two-color SXRS signals can jointly indicate excitation energy transfer (EET) between the porphyrin monomers. It is shown that the SXRS signals provide a novel window into EET dynamics in multiporphyrin systems, and can be used as a powerful tool to monitor the subtle chemical environment which affects EET
The effect of oxygen stoichiometry on electrical transport and magnetic properties of La0.9Te0.1MnOy
The effect of the variation of oxygen content on structural, magnetic and
transport properties in the electron-doped manganites La0.9Te0.1MnOy has been
investigated. All samples show a rhombohedral structure with the space group .
The Curie temperature decreases and the paramagnetic-ferromagnetic (PM-FM)
transition becomes broader with the reduction of oxygen content. The
resistivity of the annealed samples increases slightly with a small reduction
of oxygen content. Further reduction in the oxygen content, the resistivity
maximum increases by six orders of magnitude compared with that of the
as-prepared sample, and the r(T) curves of samples with y = 2.86 and y = 2.83
display the semiconducting behavior () in both high-temperature PM phase and
low-temperature FM phase, which is considered to be related to the appearance
of superexchange ferromagnetism (SFM) and the localization of carriers. The
results are discussed in terms of the combined effects of the increase in the
Mn2+/(Mn2++Mn3+) ratio, the partial destruction of double exchange (DE)
interaction, and the localization of carriers due to the introduction of oxygen
vacancies in the Mn-O-Mn network.Comment: 20 pages, 8 figure
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
- …