11 research outputs found

    Influence of the optical Fe II quasi-continuum on measuring the spectral parameters of active galactic nuclei

    Full text link
    We explore the influence of optical Fe II quasi-continuum on the measured spectral parameters in the 4150-5500 A range for the spectra of Type 1 active galactic nuclei (AGNs). We assume that the broad line region is composed of two sub-regions: the very broad line region (VBLR) and the intermediate line region (ILR). We constructed a large set of synthetic AGN spectra by taking different portions of the VBLR and ILR contributions, where initially the VBLR and ILR model spectra were constructed on the basis of prototypes of two observed spectra with dominant VBLR (i.e. ILR) emission. To investigate the influence of the optical Fe II quasi-continuum on the AGN measured spectral parameters, we fit the power-law continuum and emission lines in a set of model spectra, as commonly done for observed AGN spectra. We then compared the spectral parameters obtained after the fitting procedure with those of the model. We find that the optical Fe II quasi-continuum can be very strong in the case of spectra with strong and very broad Fe II lines and it is difficult to fully separate it from the power-law continuum. This gives the effect of a slightly underestimated Hβ\beta width and underestimated fluxes of the Hβ\beta and Fe II lines, while the continuum flux is then slightly overestimated. The most affected spectral parameters are the line equivalent widths (EWs), especially EW Fe II, which may be strongly underestimated. We discuss the possible underlying physics in the quasar main sequence, as implied by the results of our spectral modelling. We find that the set of AGN model spectra assuming different ILR and VBLR contributions can aptly reproduce the quasar main sequence, that is, the full width at half maximum (FWHM) Hβ\beta versus Fe II/Hβ\beta anti-correlation, where both parameters in this anti-correlation are strongly dependent on the ILR and VBLR contribution rate.Comment: 12 pages, 15 figures, accepted in Astronomy & Astrophysic

    Variations in ionospheric D-region recombination properties during increase of its X-ray heating induced by solar X-ray flare

    Get PDF
    In this paper we present an analysis of parameters describing the effective recombination processes in the upper ionospheric D-region in the period of its additional heating by the X-radiation emitted during a solar X-ray flare. We present a procedure for calculation of the effective recombination coefficient and electron loss rate in the period when the X-radiation flux detected by the GOES satellite in the wavelength domain between 0.1 and 0.8 nm increases. The developed procedure is based on observational data obtained in the low ionospheric monitoring by the very low/low frequency radio waves and it is related to the considered area and time period. The obtained expressions are applied to data for the very low frequency signal emitted in Germany and recorded in Serbia during the solar X-ray flare detected by the GOES-14 satellite on May 5, 2010

    The LSST Era of Supermassive Black Hole Accretion Disk Reverberation Mapping

    Full text link
    peer reviewedThe Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) will detect an unprecedentedly large sample of actively accreting supermassive black holes with typical accretion disk (AD) sizes of a few light days. This brings us to face challenges in the reverberation mapping (RM) measurement of AD sizes in active galactic nuclei using interband continuum delays. We examine the effect of LSST cadence strategies on AD RM using our metric AGN_TimeLagMetric. It accounts for redshift, cadence, the magnitude limit, and magnitude corrections for dust extinction. Running our metric on different LSST cadence strategies, we produce an atlas of the performance estimations for LSST photometric RM measurements. We provide an upper limit on the estimated number of quasars for which the AD time lag can be computed within 0 1000 sources in each deep drilling field (DDF; (10 deg2)) in any filter, with the redshift distribution of these sources peaking at z ≍ 1. We find the LSST observation strategies with a good cadence (≲5 days) and a long cumulative season (~9 yr), as proposed for LSST DDF, are favored for the AD size measurement. We create synthetic LSST light curves for the most suitable DDF cadences and determine RM time lags to demonstrate the impact of the best cadences based on the proposed metric

    Tracing the outflow kinematics in Type 2 active galactic nuclei

    No full text
    We used a sample of 577 spectra of active galactic nuclei Type 1.8-2 (z < 0.25) taken from the Sloan Digital Sky Survey to trace the influence of the outflow kinematics on the profiles of different emission lines (Hβ, [O III], Hα, [N II], [S II]). All considered lines were fitted with two Gaussian components: one that fits the core of the line, and another that fits the wings. We provide a procedure for decomposition of the Hα+[N II] wavelength band for spectra where these lines overlap. The influence of the gravitational and non-gravitational kinematics on the line components is investigated by comparing the dispersions of the line components with stellar velocity dispersion. We find that wing components of all the considered emission lines have pure non-gravitational kinematics. The core components are consistent with gravitational kinematics for the Hα, [N II], and [S II] lines, while in the [O III] there is evidence for contribution from non-gravitational kinematics. We adopted the wing components as a proxy for the outflow contribution and investigated the outflow kinematics by analysing the correlations between the widths and shifts of the wing components of different lines. For this purpose, we used the subsets in which wing components are detected in both compared lines, and can be fitted independently. We find strong correlations between wing component shifts, as well as between wing component widths of all considered lines, with the exception of the Hβ wing component width. These correlations indicate that outflow dynamics systemically affect all emission lines in the spectrum. However, it reflects with a different strength in their profiles, which is observed as different widths of the wing components. This is investigated by comparison of the mean widths of the wing components in subsets where wing components are present in all lines. The strongest outflow signature is observed in the [O III] lines, which have the broadest wing components; weaker outflow signatures are found in Hα and [N II], and the weakest is found for [S II]. These results imply that the considered lines arise in different parts of an outflowing region
    corecore