10 research outputs found

    Phenotypic Diversity of Seminal Root Traits in Bread Wheat Germplasm from Different Origins

    Get PDF
    Publisher Copyright: © 2022 by the authors.Bread wheat (Triticum aestivum L.) is a major staple crop, and more adapted varieties are needed to ensure productivity under unpredictable stress scenarios resulting from climate changes. In the development of new genotypes, root system traits are essential since roots have a key function in water and nutrient uptake, and root architecture determines the plant’s ability to spatially explore the soil resources. Genetic variation in wheat root system may be assessed at the early stages of development. This study evaluates in vitro and at the seedling stage, the genetic diversity of root growth angle (RGA), seminal root number (SRN), and radicle length (RadL) in 30 bread wheat genotypes from different origins and belonging to distinct evolutive or breeding groups. SRN and RadL were analyzed at 1, 2, 3 and 6 days after sowing (DAS) and RGA was measured through the angle between the first pair of seminal roots. A large variability was found in RGA values that ranged from 63° to 122°. Although differences were found between genotypes within the same groups, the narrower angles tended to occur among landraces, while the higher RGA values were observed in advanced lines and Australian varieties. Differences were also observed as regards the SRN (1.0–3.0, 2.7–4.7, 3.2–5.0 and 4.4–6.3 at 1, 2, 3 and 6 DAS, respectively) and RadL (0.1–1.5, 2.1–5.0, 4.0–7.5 and 5.1–13.7 cm at 1, 2, 3 and 6 DAS, respectively). Genetic variability in root traits at seedling stage allows more rapid selection of genotypes better adapted to environmental and soil constraints, necessary to Portuguese Wheat Breeding Program. It will also contribute to the definition of wheat ideotypes with improved performance under Mediterranean climate conditions.publishersversionpublishe

    Grain Composition and Quality in Portuguese Triticum aestivum Germplasm Subjected to Heat Stress after Anthesis

    Get PDF
    Funding Information: Funding: This work was supported by national funds from Fundação para a Ciência e a Tecnologia (FCT), Portugal, through the Research Unit UIDP/04035/2020 (GeoBioTec). Funding Information: This work was supported by national funds from Funda??o para a Ci?ncia e a Tecnologia (FCT), Portugal, through the Research Unit UIDP/04035/2020 (GeoBioTec).The authors acknowledge GeoBioTec (UIDB/04035/2020) Research Center for support facilities. Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Bread wheat (Triticum aestivum) is a major crop worldwide, and it is highly susceptible to heat. In this work, grain production and composition were evaluated in Portuguese T. aestivum germplasm (landraces and commercial varieties), which was subjected to heat after anthesis (grain filling stage). Heat increased the test weight (TW) in Nabão, Grécia and Restauração, indicating an improved flour-yield potential. Mocho de Espiga Branca (MEB) and Transmontano (T94) showed higher thousand-kernel weight (TKW). Gentil Rosso presented increased soluble sugars, which are yeast substrates in the bread-making process. Ardila stood out for its protein increase under heat. Overall SDS was unaffected by higher temperature, but increased in T94, indicating a better dough elasticity for bread-making purposes. Under heat, lipid content was maintained in most genotypes, being endogenous fatty acids (FAs) key players in fresh bread quality. Lipid unsaturation, evaluated through the double bond index (DBI), also remained unaffected in most genotypes, suggesting a lower flour susceptibility to lipoperoxidation. In Grécia, heat promoted a higher abundance of monounsaturated oleic (C18:1) and polyunsaturated linoleic (C18:2) acids, which are essential fatty acids in the human diet. This work highlighted a great variability in most parameters both under control conditions or in response to heat during grain filling. Cluster analysis of traits revealed a lower susceptibility to heat during grain filling in Ardila, Restauração, and Ruivo, in contrast to MEQ, which seems to be more differentially affected at this stage. Characterization and identification of more favorable features under adverse environments may be relevant for agronomic, industrial, or breeding purposes, in view of a better crop adaptation to changing climate and an improved crop sustainability in agricultural systems more prone to heat stress.publishersversionpublishe

    Cereal yield gaps across Europe

    Get PDF
    peer-reviewedEurope accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha−1 for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets.We received financial contributions from the strategic investment funds (IPOP) of Wageningen University & Research, Bill & Melinda Gates Foundation, MACSUR under EU FACCE-JPI which was funded through several national contributions, and TempAg (http://tempag.net/)

    Remote Monitoring of Crop Nitrogen Nutrition to Adjust Crop Models: A Review

    Get PDF
    Nitrogen use efficiency (NUE) is a central issue to address regarding the nitrogen (N) uptake by crops, and can be improved by applying the correct dose of fertilizers at specific points in the fields according to the plants status. The N nutrition index (NNI) was developed to diagnose plant N status. However, its determination requires destructive, time-consuming measurements of plant N content (PNC) and plant dry matter (PDM). To overcome logistical and economic problems, it is necessary to assesses crop NNI rapidly and non-destructively. According to the literature which we reviewed, it, as well as PNC and PDM, can be estimated using vegetation indices obtained from remote sensing. While sensory techniques are useful for measuring PNC, crop growth models estimate crop N requirements. Research has indicated that the accuracy of the estimate is increased through the integration of remote sensing data to periodically update the model, considering the spatial variability in the plot. However, this combination of data presents some difficulties. On one hand, at the level of remote sensing is the identification of the most appropriate sensor for each situation, and on the other hand, at the level of crop growth models is the estimation of the needs of crops in the interest stages of growth. The methods used to couple remote sensing data with the needs of crops estimated by crop growth models must be very well calibrated, especially for the crop parameters and for the environment around this crop. Therefore, this paper reviews currently available information from Google Scholar and ScienceDirect to identify studies relevant to crops N nutrition status, to assess crop NNI through non-destructive methods, and to integrate the remote sensing data on crop models from which the cited articles were selected. Finally, we discuss further research on PNC determination via remote sensing and algorithms to help farmers with field application. Although some knowledge about this determination is still necessary, we can define three guidelines to aid in choosing a correct platform

    Wheat Crop under Waterlogging: Potential Soil and Plant Effects

    Get PDF
    Inundation, excessive precipitation, or inadequate field drainage can cause waterlogging of cultivated land. It is anticipated that climate change will increase the frequency, intensity, and unpredictability of flooding events. This stress affects 10–15 million hectares of wheat every year, resulting in 20–50% yield losses. Since this crop greatly sustains a population’s food demands, providing ca. 20% of the world’s energy and protein diets requirements, it is crucial to understand changes in soil and plant physiology under excess water conditions. Variations in redox potential, pH, nutrient availability, and electrical conductivity of waterlogged soil will be addressed, as well as their impacts in major plant responses, such as root system and plant development. Waterlogging effects at the leaf level will also be addressed, with a particular focus on gas exchanges, photosynthetic pigments, soluble sugars, membrane integrity, lipids, and oxidative stress

    Unveiling the Impact of Growth Traits on the Yield of Bread Wheat Germplasm Subjected to Waterlogging

    No full text
    Changes in the climate have led to the occurrence of extreme events that threaten the production of major crops, namely that of bread wheat (Triticum aestivum L.). Waterlogging imposed at the tillering stage can severely affect the yield, but several genotype features may counterbalance the negative impacts on yields. The aim of this work was to evaluate the effect of waterlogging on the number of fertile spikes, kernels per plant, and single kernel weight, as well as to assess the main culm and tiller participation in yields. We also investigated if the growth stages affected by stress would influence such traits. The study was conducted in climatized growth chambers using 23 genotypes from five distinct germplasm groups (Portuguese landraces, varieties with the introduced Italian germplasm, post-Green Revolution varieties with the introduced CIMMYT germplasm, advanced lines from the Portuguese wheat breeding program, Australian varieties). Variability was observed between and within the groups. Ten genotypes performed well under waterlogged conditions, showing promising results. Among these, GR-2 showed a rise in tiller yield, AdvL-3 in both the main culm and tiller yield, and the remaining ones displayed unaltered values in both the main culm and tillers. PL-1, PL-5, GR-1, GR-3, AdvL-2, Austrl-2, and Austrl-4 were able to compensate for the decreases observed for several traits, reaching harvest yield values that were unaffected in both the main culm and tillers. Rises in the tiller yield or in the tillers and main culm, GR-2 and AdvL-3 exhibited either stability or increases in all the studied parameters. Results also suggest a negative correlation between the growth stage reached during waterlogging and the effect of this stress on the number of spikes per plant, plant and tiller yield, kernel per spike (tillers), and single kernel weight (tillers). Our findings may contribute to a better understanding of wheat responses to waterlogging and to the development of solutions that mitigate the socio-economic impacts of 20–50% wheat yield reductions, thereby preserving the daily 20% supply of energy and protein required for human nutrition and global food security

    Otimização da aplicação de fertilização azotada em trigos melhoradores

    No full text
    O projeto FERTITRIGO - Otimizaçao da fertilização azotada em trigos melhoradores - foi desenvolvido na sequência de outros e tendo como base o conhecimento de que os principais fatores que influenciam a produção e a qualidade do grão de trigo são os genéticos (variedade), as condições climáticas e a as técnicas culturais, com destaque para a fertilização azotada

    Yield gaps of cereals across Europe

    No full text
    The increasing global demand for food requires a sustainable intensification of crop production in low-yielding areas. Actions to improve crop production in these regions call for accurate spatially explicit identification of yield gaps, i.e. the difference between potential or water-limited yield and actual yield. The Global Yield Gap Atlas (GYGA) project proposes a consistent bottom-up approach to estimate yield gaps. For each country, a climate zonation is overlaid with a crop area map. Within climate zones with important crop areas, weather stations are selected with at least 10 years of daily data. For each of the 3 dominant soil types within a 100 km zone around the weather stations, the potential and water-limited yields are simulated with the WOFOST crop model, using location-specific knowledge on crop systems. Data from variety trials or other experiments, approaching potential or water-limited yields, are used for validation and calibration of the model. Actual yields are taken from sub-national statistics. Yields and yield gaps are scaled up to climate zones and subsequently to countries. The average national simulated wheat yields under rainfed conditions varied from around 5 to 6 t/ha/year in the Mediterranean to nearly 12 t/ha/year on the British Isles and in the Low Countries. The average actual wheat yield varied from around 2 to 3 t/ha/year in the Mediterranean and some countries in East Europe to nearly 9 t/ha/year on the British Isles and in the Low Countries. The average relative yield gaps varied from around 10% to 30% in many countries in Northwest Europe to around 50% to 70% in some countries in the Mediterranean and East Europe. The paper will elaborate on results per climate zone and soil type, and will also include barley and maize. Furthermore we will relate yield gaps to nitrogen use
    corecore