1,122 research outputs found

    Histone crosstalk directed by H2B ubiquitination is required for chromatin boundary integrity

    Get PDF
    Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the setting of boundaries. The HS4 insulator element marks the 3′ boundary of a heterochromatin region located upstream of the chicken β-globin gene cluster. Here we show that HS4 recruits the E3 ligase RNF20/BRE1A to mediate H2B mono-ubiquitination (H2Bub1) at this insulator. Knockdown experiments show that RNF20 is required for H2Bub1 and processive H3K4 methylation. Depletion of RNF20 results in a collapse of the active histone modification signature at the HS4 chromatin boundary, where H2Bub1, H3K4 methylation, and hyperacetylation of H3, H4, and H2A.Z are rapidly lost. A remarkably similar set of events occurs at the HSA/HSB regulatory elements of the FOLR1 gene, which mark the 5′ boundary of the same heterochromatin region. We find that persistent H2Bub1 at the HSA/HSB and HS4 elements is required for chromatin boundary integrity. The loss of boundary function leads to the sequential spreading of H3K9me2, H3K9me3, and H4K20me3 over the entire 50 kb FOLR1 and β-globin region and silencing of FOLR1 expression. These findings show that the HSA/HSB and HS4 boundary elements direct a cascade of active histone modifications that defend the FOLR1 and β-globin gene loci from the pervasive encroachment of an adjacent heterochromatin domain. We propose that many gene loci employ H2Bub1-dependent boundaries to prevent heterochromatin spreading

    Role of lepton flavor violating (LFV) muon decay in Seesaw model and LSND

    Get PDF
    The aim of the work is to study LFV in a newly proposed Seesaw model of neutrino mass and to see whether it could explain LSND excess. The motivation of this Seesaw model was that there was no new physics beyond the TeV scale. By studying \mu \to 3e in this model, it is shown that the upper bound on the branching ratio requires Higgs mass m_{h} of a new scalar doublet with lepton number L=-1 needed in the model has to be about 9 TeV. The predicted branching ratio for \mu \to e\nu_{l}\bar{\nu}_{l} is too small to explain the LSND. PACS: 11.30.Hv, 14.60.PqComment: 05 pages, three figures, the version to appear in PR

    Hemodynamic, Functional, and Clinical Responses to Pulmonary Artery Denervation in Patients With Pulmonary Arterial Hypertension of Different Causes: Phase II Results From the Pulmonary Artery Denervation-1 Study

    Get PDF
    Background—The mechanisms underlying pulmonary arterial hypertension (PAH) are multifactorial. The efficacy of pulmonary artery denervation (PADN) for idiopathic PAH treatment has been evaluated. This study aimed to analyze the hemodynamic, functional, and clinical responses to PADN in patients with PAH of different causes. Methods and Results—Between April 2012 and April 2014, 66 consecutive patients with a resting mean pulmonary arterial pressure ≥25 mmHg treated with PADN were prospectively followed up. Target drugs were discontinued after the PADN procedure. Hemodynamic response and 6-minute walk distance were repeatedly measured within the 1 year post PADN follow-up. The clinical end point was the occurrence of PAH-related events at the 1-year follow-up. There were no PADNrelated complications. Hemodynamic success (defined as the reduction in mean pulmonary arterial pressure by a minimal 10% post PADN) was achieved in 94% of all patients, with a mean absolute reduction in systolic pulmonary arterial pressure and mean pulmonary arterial pressure within 24 hours of −10 mmHg and −7 mmHg, respectively. The average increment in 6-minute walk distance after PADN was 94 m. Worse PAH-related events occurred in 10 patients (15%), mostly driven by the worsening of PAH (12%). There were 8 (12%) all-cause deaths, with 6 (9%) PAH-related deaths. Conclusions—PADN was safe and feasible for the treatment of PAH. The PADN procedure was associated with significant improvements in hemodynamic function, exercise capacity, and cardiac function and with less frequent PAH-related events and death at 1 year after PADN treatment. Further randomized studies are required to confirm the efficacy of PADN for PAH

    Entropy spectrum of a Kerr anti-de Sitter black hole

    Full text link
    The entropy spectrum of a spherically symmetric black hole was derived without the quasinormal modes in the work of Majhi and Vagenas. Extending this work to rotating black holes, we quantize the entropy and the horizon area of a Kerr anti-de Sitter black hole by two methods. The spectra of entropy and area are obtained via the Bohr-Sommerfeld quantization rule and the adiabatic invariance in the first way. By addressing the wave function of emitted (absorbed) particles, the entropy and the area are quantized in the second one. Both results show that the entropy and the area spectra are equally spaced.Comment: Accepted for publication in The European Physical Journal C, Volume 72, Issue

    Renormalization Group Running of Lepton Mixing Parameters in See-Saw Models with S4S_4 Flavor Symmetry

    Full text link
    We study the renormalization group running of the tri-bimaximal mixing predicted by the two typical S4S_4 flavor models at leading order. Although the textures of the mass matrices are completely different, the evolution of neutrino mass and mixing parameters is found to display approximately the same pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum corrections to both atmospheric and reactor neutrino mixing angles are so small that they can be neglected. The evolution of the solar mixing angle θ12\theta_{12} depends on tanβ\tan\beta and neutrino mass spectrum, the deviation from its tri-bimaximal value could be large. Taking into account the renormalization group running effect, the neutrino spectrum is constrained by experimental data on θ12\theta_{12} in addition to the self-consistency conditions of the models, and the inverted hierarchy spectrum is disfavored for large tanβ\tan\beta. The evolution of light-neutrino masses is approximately described by a common scaling factor.Comment: 23 pages, 6figure

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.

    Nucleon Charge and Magnetization Densities from Sachs Form Factors

    Full text link
    Relativistic prescriptions relating Sachs form factors to nucleon charge and magnetization densities are used to fit recent data for both the proton and the neutron. The analysis uses expansions in complete radial bases to minimize model dependence and to estimate the uncertainties in radial densities due to limitation of the range of momentum transfer. We find that the charge distribution for the proton is significantly broad than its magnetization density and that the magnetization density is slightly broader for the neutron than the proton. The neutron charge form factor is consistent with the Galster parametrization over the available range of Q^2, but relativistic inversion produces a softer radial density. Discrete ambiguities in the inversion method are analyzed in detail. The method of Mitra and Kumari ensures compatibility with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have been added and several discussions have been clarified with no significant changes to the conclusions. Now contains 47 pages including 21 figures and 2 table

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
    corecore