2,729 research outputs found

    Entanglement-free Heisenberg-limited phase estimation

    Get PDF
    Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At the fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard quantum limit. However, it has long been conjectured that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N. It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N <= 6, but few have surpassed the standard quantum limit and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaev's phase estimation algorithm using adaptive measurement theory to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio

    Measuring measurement

    Full text link
    Measurement connects the world of quantum phenomena to the world of classical events. It plays both a passive role, observing quantum systems, and an active one, preparing quantum states and controlling them. Surprisingly - in the light of the central status of measurement in quantum mechanics - there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (i.e. tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography: we identify the optimal positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process, and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon number resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.Comment: 6 pages, 4 figures,see video abstract at http://www.quantiki.org/video_abstracts/0807244

    Shear strength of reinforced concrete dapped-end beams using mechanism analysis.

    Get PDF
    yesA mechanism analysis based on the upper-bound theorem of concrete plasticity is developed to predict the critical failure plane and corresponding shear capacity of reinforced concrete dapped-end beams. Failure modes observed in physical tests of reinforced concrete dapped-end beams are idealised as an assemblage of two moving blocks separated by a failure surface of displacement discontinuity. The developed mechanism analysis rationally represents the effect of different parameters on failure modes; as a result, the predicted shear capacity is in good agreement with test results. On the other hand, empirical equations specified in the Precast/Prestressed Concrete Institute design method and strutand-tie model based on ACI 318-05 highly underestimate test results. The shear capacity of dapped-end beams predicted by the mechanism analysis and strut-and-tie model decreases with the increase of shear span-to-full beam depth ratio when failure occurs along diagonal cracks originating at the bottom corner of the full-depth beam, although the shear span-to-full beam depth ratio is ignored in the Precast/Prestressed Concrete Institute design method

    Operational approach to open dynamics and quantifying initial correlations

    Get PDF
    A central aim of physics is to describe the dynamics of physical systems. Schrodinger's equation does this for isolated quantum systems. Describing the time evolution of a quantum system that interacts with its environment, in its most general form, has proved to be difficult because the dynamics is dependent on the state of the environment and the correlations with it. For discrete processes, such as quantum gates or chemical reactions, quantum process tomography provides the complete description of the dynamics, provided that the initial states of the system and the environment are independent of each other. However, many physical systems are correlated with the environment at the beginning of the experiment. Here, we give a prescription of quantum process tomography that yields the complete description of the dynamics of the system even when the initial correlations are present. Surprisingly, our method also gives quantitative expressions for the initial correlation.Comment: Completely re-written for clarity of presentation. 15 pages and 2 figure

    Identifying the favored mutation in a positive selective sweep.

    Get PDF
    Most approaches that capture signatures of selective sweeps in population genomics data do not identify the specific mutation favored by selection. We present iSAFE (for "integrated selection of allele favored by evolution"), a method that enables researchers to accurately pinpoint the favored mutation in a large region (∼5 Mbp) by using a statistic derived solely from population genetics signals. iSAFE does not require knowledge of demography, the phenotype under selection, or functional annotations of mutations

    Behavioral determinants as predictors of return to work after long-term sickness absence: an application of the theory of planned behavior

    Get PDF
    Background The aim of this prospective, longitudinal cohort study was to analyze the association between the three behavioral determinants of the theory of planned behavior (TPB) model-attitude, subjective norm and self-efficacy-and the time to return-to-work (RTW) in employees on long-term sick leave. Methods The study was based on a sample of 926 employees on sickness absence (maximum duration of 12 weeks). The employees filled out a baseline questionnaire and were subsequently followed until the tenth month after listing sick. The TPB-determinants were measured at baseline. Work attitude was measured with a Dutch language version of the Work Involvement Scale. Subjective norm was measured with a self-structured scale reflecting a person's perception of social support and social pressure. Self-efficacy was measured with the three subscales of a standardised Dutch version of the general self-efficacy scale (ALCOS): willingness to expend effort in completing the behavior, persistence in the face of adversity, and willingness to initiate behavior. Cox proportional hazards regression analyses were used to identify behavioral determinants of the time to RTW. Results Median time to RTW was 160 days. In the univariate analysis, all potential prognostic factors were significantly associated (P < 0.15) with time to RTW: work attitude, social support, and the three subscales of self-efficacy. The final multivariate model with time to RTW as the predicted outcome included work attitude, social support and willingness to expend effort in completing the behavior as significant predictive factors. Conclusions This prospective, longitudinal cohort-study showed that work attitude, social support and willingness to expend effort in completing the behavior are significantly associated with a shorter time to RTW in employees on long-term sickness absence. This provides suggestive evidence for the relevance of behavioral characteristics in the prediction of duration of sickness absence. It may be a promising approach to address the behavioral determinants in the development of interventions focusing on RTW in employees on long-term sick leave

    Steps to improve gender diversity in the fields of coastal geosciences and engineering

    Get PDF
    Robust data are the base of effective gender diversity policy. Evidence shows that gender inequality is still pervasive in science, technology, engineering and mathematics (STEM). Coastal geoscience and engineering (CGE) encompasses professionals working on coastal processes, integrating expertise across physics, geomorphology, engineering, planning and management. The article presents novel results of gender inequality and experiences of gender bias in CGE, and proposes practical steps to address it. It analyses the gender representation in 9 societies, 25 journals, and 10 conferences in CGE and establishes that women represent 30% of the international CGE community, yet there is under-representation in prestige roles such as journal editorial board members (15% women) and conference organisers (18% women). The data show that female underrepresentation is less prominent when the path to prestige roles is clearly outlined and candidates can self-nominate or volunteer instead of the traditional invitation-only pathway. By analysing the views of 314 survey respondents (34% male, 65% female, and 1% ‘‘other’’), we show that 81% perceive the lack of female role models as a key hurdle for gender equity, and a significantly larger proportion of females (47%) felt held back in their careers due to their gender in comparison with males (9%). The lack of women in prestige roles and senior positions contributes to 81% of survey respondents perceiving the lack of female role models in CGE as a key hurdle for gender equality. While it is clear that having more women as role models is important, this is not enough to effect change. Here seven practical steps towards achieving gender equity in CGE are presented: (1) Advocate for more women in prestige roles; (2) Promote high-achieving females; (3) Create awareness of gender bias; (4) Speak up; (5) Get better support for return to work; (6) Redefine success; and, (7) Encourage more women to enter the discipline at a young age. Some of these steps can be successfully implemented immediately (steps 1–4), while others need institutional engagement and represent major societal overhauls. In any case, these seven practical steps require actions that can start immediately

    SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology

    Get PDF
    HET Optical spectra covering the evolution from about 6 days before to about 5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the "Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and narrow SiII lines, and for a period of at least 10 days beginning around maximum light these profiles do not change in width or depth and they indicate a constant expansion velocity of ~10,600 km/s. We analyzed the observations based on detailed radiation dynamical models in the literature. Whereas delayed detonation and deflagration models have been used to explain the majority of SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an unvarying line profile. Pulsating delayed detonations and merger scenarios form shell-like density structures with properties mostly related to the mass of the shell, M_shell, and we discuss how these models may explain the observed SiII line evolution; however, these models are based on spherical calculations and other possibilities may exist. SN 2005hj is consistent with respect to the onset, duration, and velocity of the plateau, the peak luminosity and, within the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun. Our analysis suggests a distinct class of events hidden within the Branch-normal SNe Ia. If the predicted relations between observables are confirmed, they may provide a way to separate these two groups. We discuss the implications of two distinct progenitor classes on cosmological studies employing SNe Ia, including possible differences in the peak luminosity to light curve width relation.Comment: ApJ accepted, 31 page

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems
    corecore