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ABSTRACT 

A mechanism analysis based on upper-bound theorem of concrete plasticity is developed to predict 

the critical failure plane and corresponding shear capacity of reinforced concrete dapped-end beams. 

Failure modes observed in physical tests of reinforced concrete dapped-end beams are idealized as 

an assemblage of two moving blocks separated by failure surface of displacement discontinuity. The 

developed mechanism analysis rationally represents the effect of different parameters on failure 

modes; as a result, the predicted shear capacity is in good agreement with test results. On the other 

hand, empirical equations specified in PCI design method and strut-and-tie model based on ACI 

318-05 highly underestimate test results. The shear capacity of dapped-end beams predicted by the 

mechanism analysis and strut-and-tie model decreases with the increase of shear span-to-full beam 

depth ratio when failure occurs along diagonal cracks originating at the bottom corner of beam full 

depth, though the shear span-to- full beam depth ratio is ignored in PCI design method. 

 

Keywords: dapped-end beams, failure modes, shear capacity, mechanism analysis, strut-and-tie 

model. 

INTRODUCTION 

Reinforced concrete dapped-end beams have many useful applications as drop-in beams between 

corbels or beam-to-beam connections. They are classified as discontinuity regions (D-regions) 

caused by abrupt change in beam depth and consequently, stress flow around the discontinuity is 
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severely disturbed.
1, 2

 Mattock and Chan
3
 recommended that the nib of dapped end beams may be 

designed similar to an inverted corbel. However, the main diagonal concrete strut force is resisted 

by a compression force in corbel columns and a tensile force in hanger reinforcement of dapped end 

beams. 

Although dapped-end beams provide better lateral stability and reduce the construction height of 

pre-cast concrete floors
1, 2

, few studies
2-7

 on such member were conducted in the literature. Lu et 

al.
2
 concluded that the shear capacity of dapped-end beams increased with the decrease of effective 

shear span-to-depth ratio of nib, and increase of nib longitudinal reinforcement and concrete 

strength. On the other hand, Mattock and Chan
3
 showed that dapped-end beams exhibited different 

failure modes with the variation of nib shear span-to-depth ratio and amount of reinforcement at 

different locations. 

In the present study, a mechanism analysis based on upper-bound theorem of concrete plasticity is 

developed to assess the failure plane and corresponding shear capacity of dapped-end beams. The 

effect of different parameters on the critical failure plane and shear capacity of dapped-end beams is 

investigated using the developed mechanism analysis, empirical equation specified in PCI design 

method
8
, and strut-and-tie model based on ACI 318-05

9
. 

PCI DESIGN METHOD 

Based on tests carried out by Mattock and Chan
3
, PCI design method recommended several 

potential failure modes, as numbered in Fig. 1, to evaluate the shear capacity nV  of dapped-end 
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beams with an effective shear span-to-depth ratio dda /1  less than 1.0, where 1a  is the effective 

shear span of nib measured from the center of support to hanger reinforcement and dd  is the 

effective depth of nib. The shear capacity nV  of dapped-end beams owing to yielding of nib 

longitudinal reinforcement (failure plane ①) can be determined from: 

 

1a

dhNM
V ddn

n


          (1) 
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
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'

c

yss

s
bhf
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the longitudinal reinforcement index of nib, sA  and ysf  are the area and yield strength of 

longitudinal reinforcement of nib, respectively, N  is the horizontal tensile force applied at beam 

support, and dh  is the overall depth of nib. On the other hand, the shear capacity nV  owing to 

diagonal tensile failure plane ② is given below: 

dcyhhyvvn bdffAfAV '166.0        (2) 

where vA  and yvf  are the area and yield strength of vertical shear reinforcement of nib, 

respectively, and hA  and yhf  are the area and yield strength of horizontal shear reinforcement of 

nib, respectively, and   = 1.0 for normal weight concrete, 0.85 for sand-lightweight concrete and 

0.75 for all other lightweight concrete. For the diagonal tensile failure of re-entrant corner (failure 

plane ③), the shear capacity nV  is only dependent on the tensile capacity of hanger reinforcement, 

ignoring the shear transfer capacity of concrete, as given in Eq. (3) below: 

ySHSHn fAV             (3) 
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where SHA  and ySHf  are the area and yield strength of hanger reinforcement, respectively. On the 

other hand, the shear capacity nV  due to potential vertical cracks along the interface between nib 

and full depth beam (failure plane ④) is estimated from the shear friction hypothesis as below: 

  ddcyhhyssdn bhbhfNfAfAbhV 2'2 895.6 and 3.0 ofmin 895.6     (4) 

where   4.1  is the friction coefficient of concrete. 

PCI design method specifies that the capacity of each potential failure plane represented in Fig. 1 

and predicted from Eqs. (1) to (4) should be separately calculated, and the smallest value would 

govern the dapped-end beam capacity. Fig. 2 shows the variation of normalized shear capacity 

'/ cn bhfV  of dapped-end beams without shear reinforcement ( 0 hv AA ) and horizontal loads 

( N =0) obtained from Eqs (1) to (4) versus the main longitudinal reinforcement index s  of nib. 

Other beam details are presented in Fig. 2. As s  increases, predictions from Eqs (1) and (4) are 

becoming very large and consequently not critical. Therefore, the critical failure plane of dapped-

end beams having s  more than around 0.02 can be generally formed along concrete strut of nib 

(failure plane ②) or diagonal cracks originating at re-entrant corner (failure plane ③). Comparing 

the governing Eqs. (2) and (3) for the two modes of failure ② and ③, the shear capacity of 

dapped-end beams is likely to be controlled by failure of nib concrete strut (failure plane ②), when 

hf

d

bhf

fA

c

d

c

ySHSH

SH
''

166.0 
 













 , regardless of dda /1  and s . Thus, PCI design method does not 

adequately represent the effect of dda /1 , and s , and completely ignores the effect of /a h  on 

shear capacity of dapped end beams. 
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STRUT-AND-TIE MODEL 

ACI 318-05
9
 recommends the use of strut-and-tie model (STM) for the design of discontinuity 

regions in reinforced concrete members to which beam theory does not apply. However, it does not 

provide specific guidance on suitable strut-and-tie models for different cases. Fig. 3 shows a 

developed schematic strut-and-tie model for dapped-end beams in accordance with ACI 318-05 

(Appendix A). The top load applied to the dapped-end beam is carried by struts representing 

compression stress fields in concrete and tie action of reinforcing bars. In their softened strut-and-

tie model, Lu et al. [2] assumed that failure of dapped-end beams is always formed at the concrete 

strut of nib as observed in their physical tests of dapped end beams with shear span-to-overall depth 

ratio ha /  less than 2.0. However, failure of dapped-end beams based on STM model shown in Fig. 

3 may occur owing to yielding of longitudinal reinforcement of nib or hanger reinforcement near re-

entrant corner, or compressive crushing of either concrete strut of nib or full depth beam. The 

failure of concrete strut of full depth beam is commonly generated in the vicinity of the bottom 

node due to the tensile strain effect of main longitudinal reinforcement. Static analysis of STM 

model in Fig. 3 produces forces in different struts and ties. Hence, the shear capacity for different 

failure modes can be obtained and the smallest value of the following four cases governs the 

capacity of dapped-end beams. 

Failure plane ① (Yielding of nib reinforcement): 

  1tanNfAV yssn              (5. a) 

Failure plane ② (Concrete crushing of nib strut): 
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1

' sin stcen bwfV          (5. b) 

Failure plane ③ (Yielding of hanger reinforcement): 
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Failure plane ⑤ (Concrete crushing of bottom strut of full depth beam): 

 
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'
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where e  is the effectiveness factor of concrete,  11 sincos2  ptst lcw   and 

  3013 sin2cos2  aacw bsb   are widths of nib concrete strut and bottom strut of full depth 

beam, respectively, tc  and bc  are cover thicknesses of longitudinal reinforcement in nib and full 

depth beam, respectively, pl  is the width of supporting plate, 0a  is the nominal shear span, 

measured from the center of support to the interface between nib and full depth beam, and 1 , 2  

and 3  are the inclination of different concrete struts as shown in Fig. 3, which can be 

approximately expressed as   1

1 /2tan ach td 
 ,     bdtd cdhch  /tan2tan 3

1  , and 

  )/(2tan 1

1 aach b  , respectively. The intersection angle between concrete struts and ties 

should not be less than 26.5˚ as recommended by ACI 318-05. 

ACI 318-05 allows the use of effectiveness factor e  of 0.75 for concrete struts having a minimum 

amount of shear reinforcement given below, regardless of concrete strength and the amount of 

transverse tensile strains. 

  003.0sin i

iw

si

sb

A
          (6) 

where siA  and is  are the total area and spacing of the i –th layer of reinforcement crossing 

concrete strut of nib, respectively, and i  is the angle between the i –th layer of reinforcement and 
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concrete strut of nib. The shear reinforcement is recommended to be placed in two orthogonal 

directions in each face. The value of e  drops to 0.6 if the minimum shear reinforcement defined 

in Eq. (6) above is not provided. 

Fig. 4 shows the variation of normalized shear capacity '/ cn bhfV  of dapped-end beams without 

shear reinforcement ( 0 hv AA ) and horizontally applied loads ( N =0) against longitudinal 

reinforcement index s  of nib obtained from the STM model shown in Fig. 3 as recommended by 

ACI 318-05. The shear capacity determined due to yielding of longitudinal reinforcement of nib 

significantly increased with the increase of s , similar to PCI design method but that obtained from 

other failure modes is independent of s . Thus, the shear capacity of dapped-end beams is 

governed by other modes of failure, depending on different parameters; for the case presented in Fig. 

4, the yielding of hanger reinforcement rather than concrete crushing of nib or full depth beam 

struts guides the failure for 025.0s . The influence of other parameters on the dapped end beam 

shear capacity obtained from STM model is presented later in this paper. 

MECHANISM ANALYSIS 

Failure mechanism of dapped-end beams 

Failure modes of dapped-end beams subjected to vertical and horizontal loads are generally 

observed
2-5

 in nib, interface between nib and full depth beam, diagonal cracks occurred at the re-

entrant corner, or diagonal cracks initiated at the bottom corner of full depth beam. Thus, each 

failure mechanism can be idealized as an assemblage of two rigid blocks separated by a yield line 

representing the failure zone along which in-plane displacement discontinuity occurs
10

 as depicted 
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in Fig. 5. Each rigid block has two transitional and one rotational displacement components. 

Considering boundary conditions at end supports, rigid block I undergoes a relative rotation to rigid 

block II around an instantaneous center (I.C.) having icX  and icY  co-ordinates, where the global 

origin is assumed at the end support as shown in Fig. 5
11

. 

Yield line end terminals are located at fixed positions for each mechanism as presented in Fig. 5. It 

was proved
10, 11

 that the optimum shape of yield line is a hyperbola as the energy dissipated along it 

is less than that dissipated in a straight yield line. The hyperbolic yield line turns into two straight 

segments when I.C. of relative rotation lies inside or on a circle, the diameter of which is the 

straight line joining the inner edge of supporting plate and the intersection of hanger reinforcement 

with the beam top surface as shown in Fig. 5 (a). As pointed out by Ashour and Morley
11

, yielding 

of longitudinal reinforcement forces I.C. to lie at the kink of the yield line with two straight 

segments. 

Material Modelling 

Concrete is assumed to be a rigid perfectly plastic material obeying the modified Coulomb failure 

criteria
10

 with zero tension cut-off. The effective compressive strength 
*

cf  is obtained from the 

cylinder compressive strength '

cf  as below: 

'*

cec ff            (7) 

where e  is the effectiveness factor, introduced to account for limited ductility of concrete and to 

absorb other shortcomings of applying plasticity theory to concrete. Although, there is no unified 

approach for evaluating the effectiveness factor of concrete, many investigations
10, 12

 clearly 
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showed that the effectiveness factor depends on concrete strength and geometrical properties of 

reinforced concrete members. In the present study, the formula of Bræstrup
12

 modified to 

accommodate failure plane inclination i , combined with Nielsen’s model
9
 considering the effect 

of concrete compressive strength is adopted as below: 

 i

c

ie

f
 tan/2.01

200
8.0)(

'














        (8) 

where subscript i  indicates the failure plane number given in Fig. 5. Considering the geometrical 

condition of each failure plane, 1  and 2  have the same value of 




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


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1
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h
, and 3 , 
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
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
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2/
tan

0

1

p

d

laa

h
, 

2


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

















2/
tan

0

1

plaa

h
, 

respectively. The failure plane angle to the member axis in the sliding failure of a material obeying 

modified Coulomb failure criteria should be greater than 
4 2

  
 

 
, where   = 37˚ for concrete

10
. 

Thus, the inclination of failure planes should be larger than 26.5˚, which is the same as the 

minimum inclination of concrete struts specified in ACI 318-05. Steel reinforcement in both tension 

and compression is assumed to be a rigid perfectly plastic material with yield strength yf  and its 

dowel action is ignored. 

Work Equation 

The upper-bound theorem is based on the energy principle, by equating the total internal energy IW  

to external work done EW . The total internal energy mainly depends on the position of I.C. and 

amount of internal stresses in both concrete along yield line and reinforcement crossing yield lines. 
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The energy  
lcW  dissipated in concrete per unit length of yield line is written in the following 

general form
10, 13

: 

    sin1
2

*

 b
f

W c

lc          (9) 

where   is the relative displacement rate of rigid block I to rigid block II and   is the angle 

between the relative displacement at midpoint of yield line chord and yield line chord as shown in 

Fig. 5. The relative displacement rate   can be expressed as r , where r  is the distance 

between midpoint of yield line chord and I.C. and   is the rotational displacement of rigid block I. 

For a yield line with two straight segments as shown in Fig. 5 (a), one segment of the yield line is 

under tensile stresses with pure separation (
2

1


  ), and it can not contribute to the internal energy 

due to the assumption of zero tensile concrete strength
12

. Therefore, the total internal energy  
icW  

dissipated in concrete along the hyperbolic or two straight yield lines can be written in the following 

general form
10, 13

: 

 
 

ii

cie

ic OFb
f

W )'(
2

'




         (10) 

    iiii LrOF sin1'   and 2i  for  22 sin2/ dhr     (11a) 

  2

11' LOF   and 1i          for  22 sin2/ dhr     (11b) 

i  and ir  indicate relative rotational displacement of rigid block I to rigid block II about (I.C.)i 

and distance between midpoint of yield line chord i  and (I.C.)i, respectively, as shown in Fig. 5 

and i  is the angle between the relative displacement i  at chord midpoint and chord of yield 

line i . Both ir  and i  in Eq. (11) depend on the position of (I.C.)i, as a result, the energy 

dissipated in concrete is a function of horizontal and vertical coordinates  
iicic YX ,  of (I.C.)i. 

The relative displacement of reinforcement s  can be also expressed as sr , where   is the 

relative rotational displacement of rigid block I to rigid block II about (I.C.)i and sr  is the distance 
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between the intersection point of reinforcing bar j  with yield line i  and (I.C.)i. Therefore the 

energy  
isW  dissipated in longitudinal and web reinforcement crossing yield line i  is calculated 

from
13

: 

 



n

j

ijsijsijyijstiis rfAW
1

)cos()()()()(        (12) 

where n  is the number of reinforcing bars crossing yield line i , ijstA )(  and ijyf )(  are the area 

and yield strength of reinforcing bar j  crossing yield line i , respectively, ijsr )(  is the distance 

between the intersection point of reinforcing bar j  with yield line i  and (I.C.)i and ijs )(  is the 

angle between the relative displacement js )(  and reinforcing bar j  crossing yield line i  as 

shown in Fig. 6. In case of horizontal and vertical reinforcing bars, ijs )cos(  can be calculated 

from    
ijsijiic ryY /  and    

ijsijiic rxX / , respectively, where ijx  and ijy  are the horizontal 

and vertical coordinates of intersection point of reinforcing bar j  and yield line i , respectively. 

The external work  
iEW  done by the vertical load nV  and horizontal load N  on rigid block I is: 

     
iiciiiciniE YNXVW          (13) 

Equating the total internal energy dissipated in concrete and reinforcement to external work done, 

the shear capacity, inV )( , for each yield line i  can be obtained as below: 

 
        








 


iicN

N

j
ijsijsijsti

ie

iic

c

in YrOF
hX

bhf
V 



1

'

'

cos)(
2

)(
)(     (14) 

where ijst )( = 
   

'

c

ijyijst

bhf

fA
 = reinforcement index for each individual reinforcing bar j   

crossing yield line i  and 














'

c

N
bhf

N
  = horizontal load index. 
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Solution procedure 

According to the upper-bound theorem, the collapse occurs at the least strength. The shear capacity 

of dapped-end beams for different failure planes is implicitly expressed as a function of the position 

of (I.C.)i,     
iiciic YX , , as given by Eq. (14). The horizontal  

iicX  and vertical  
iicY  

coordinates of (I.C.)i for each yield line i  are repeatedly tuned until the minimum strength is 

obtained. The process of adjusting the position of (I.C.)i for each yield line i  is achieved by 

reliable numerical optimization procedures provided in MATLAB software
14

. The shear capacity of 

dapped-end beams is the minimum capacity obtained from different mechanisms shown in Fig. 5 

and the corresponding yield line is regarded as the critical failure plane. 

Fig. 7 shows the variation of normalized shear capacity '/ cn bhfV  of dapped-end beams without 

shear reinforcement ( 0 hv AA ) and horizontal loads ( 0N ) against the main longitudinal 

reinforcement index s  using the proposed mechanism analysis. For dapped-end beams with ha /  

of 1.0, the shear capacity can be generally governed by failure plane ① until s  reaches 0.045, 

beyond which the shear capacity remains constant as the predicted failure occurs along failure plane 

②. On the other hand, the shear capacity of dapped-end beams with ha /  of 3.0 is controlled by 

failure plane ⑤ when s  is more than 0.015. Mechanism analysis clearly shows that the failure 

plane and corresponding shear capacity of dapped-end beams are affected by ha / , though the 

effect of ha /  is ignored in PCI design method and is not investigated in tests carried out by 

several researchers
2-4

. 
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COMPARISONS OF PREDICTED AND MEASURED SHEAR CAPACITIES 

Test results of 47 reinforced concrete dapped-end beams were compiled from different experimental 

investigations carried out by Lu et al.
2
, Mattock and Chan

3
, Taher

6
 and Wang et al.

2
. Table 1 

presents the geometrical dimensions, concrete strength and reinforcement details of dapped-end 

beams considered. Comparisons of measured and predicted shear capacities of dapped-end beams 

using the three techniques presented above are also given in Table 1 and Fig. 8. The mean mcs , , 

standard deviation scs , , and coefficient of variation vcs ,  of the ratio between measured and 

predicted shear capacities of dapped-end beams are presented at the bottom of Table 1. PCI design 

method and STM model based on ACI 318-05 highly underestimate the shear capacity of dapped 

end beams. The conservatism of PCI design method increases with the decrease of dha /1 , SH , 

and s  as shown in Fig. 8 as the effect of dha /1  and s  on the shear capacity of dapped-end 

beams is not considered in the beam shear failure mode of nib. The shear capacity obtained from 

STM model based on ACI 318-05 is much lower than experimental results when 2.0SH  as 

shown in Fig. 8 (b), indicating that shear transfer capacity of hanger reinforcement is 

underestimated by STM model. On the other hand, predictions obtained from the developed 

mechanism analysis are less scatter and in better agreement with test results. 

PARAMETRIC ANALYSIS 

The influence of various parameters on the critical failure plane and corresponding shear capacity of 

dapped-end beams is investigated using the equations of PCI design method, STM model based on 
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ACI 318-05, and the developed mechanism analysis. In this parametric study, the width and full 

depth of beam section, and concrete compressive strength are selected to be fixed at 300 mm, 600 

mm, and 30 MPa, respectively. In addition, the shear capacity of dapped-end beams is normalized 

by '

cbhf . It is also to be noted that the shear capacity trend against each parameter predicted below 

is influenced by the numerical values assigned to other constant parameters of dapped end beams as 

the failure mode proved to be sensitive to these numerical values. 

Effect of dapped end beam geometrical dimensions 

The effect of geometrical dimensions on the critical failure plane and corresponding normalized 

shear capacity '/ cn bhfV  of dapped-end beams without horizontal loads ( N =0) is presented in Fig. 

9(a) for shear span-to-beam full depth ratio ha / , Fig. 9(b) for effective shear span-to-nib depth 

ratio dha /1  and Fig. 9(c) for nib depth to beam full depth ratio hhd / . 

Shear span-to-beam full depth ratio ha / : Fig. 9(a) 

Predictions obtained from PCI design method remain constant with the variation of ha /  for 

dha /1  = 0.5 and 2.0 as the predicted governing failure occurs in the nib concrete strut (failure 

plane ② and Eq. 2). For dapped-end beams having dha /1  of 0.5, on the other hand, the 

normalized shear capacity predicted from the mechanism analysis decreases with the increase of 

ha /  up to ha /  of 2.25, which corresponds to the limitation of the inclination of concrete strut 

(26.5˚), beyond which the normalized shear capacity remains constant. However, the shear capacity 

of dapped-end beams having dha /1  of 2.0 obtained from the mechanism analysis is not affected 
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by ha / , similar to PCI design method. The effect of ha /  on the normalized shear capacity 

obtained from STM is similar to that observed in the mechanism analysis, though higher shear 

capacity is predicted by STM. Mechanism analysis and STM clearly show that the shear capacity of 

dapped-end beams is affected by ha /  when failure occurs along diagonal cracks initiated at the 

bottom corner of the beam full depth as shown in Fig. 5 (e) (failure plane ⑤). 

Effective shear span-to-nib depth ratio dha /1 : Fig. 9(b) 

The normalized shear capacity predicted from PCI design method is not again affected by dha /1  

when the predicted failure plane is in the concrete strut of nib (failure plane ②) for beams with 

0 hv AA . On the other hand, the predicted failure is governed by yielding of longitudinal 

reinforcement of nib (failure plane ①) when both vertical 

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  shear reinforcement indices are 0.03, and dha /1  is larger than 1.75, as a result, the 

shear capacity obtained from the PCI design method decreases with the increase of dha /1 . The 

shear capacity predicted from STM decreases with the increase of dha /1  up to dha /1  = 2.0, 

regardless of the amount of shear reinforcement. When 0.2/1 dha , however, the predictions by 

STM remains constant as the critical failure plane is formed along the concrete strut of nib (failure 

plane ②) having the smallest inclination (26.5˚) of concrete strut. On the other hand, shear capacity 

predictions obtained from the mechanism analysis decrease with the increase of dha /1 , regardless 

of the amount of shear reinforcement, when the failure occurs along the concrete strut of nib as 
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observed in test results carried out by Lu et al.
 2

 and Wang et al
7
. 

Nib depth to beam full depth ratio hhd / : Fig. 9(c) 

Predictions obtained from the PCI design method and mechanism analysis increase with the 

increase of hhd /  when the critical failure plane occurs along the concrete strut of nib, which is 

also observed in test results carried out by Wang et al
7
. The increasing rate of shear capacity 

obtained from the mechanism analysis generally increases with the increase of dha /1 , while that of 

PCI design method is independent on dha /1 . On the other hand, shear capacity predicted from 

STM decreases with the increase of hhd / , as the predicted failure is governed by concrete 

crushing of full depth beam strut (failure plane ⑤). 

 

Effect of dapped end beam reinforcement 

Fig. 10 shows the influence of dapped end beam reinforcement on the critical failure plane and 

corresponding shear capacity of dapped-end beams without horizontal loads ( N =0): Fig. 10(a) for 

longitudinal reinforcement index 
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Longitudinal reinforcement index s  of nib: Fig. 10(a) 

The shear capacity predicted from STM and mechanism analysis increases with the increase of s  

up to a certain limit, beyond which it remains constant due to the transition of predicted failure 
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mode from yielding of longitudinal reinforcement of nib to failure of concrete struts of nib or full 

depth beam. On the other hand, longitudinal reinforcement of nib has no contribution to the 

predictions obtained from PCI design method, regardless of dha /1 , when the predicted failure 

plane is formed along concrete strut of nib. 

Hanger reinforcement index SH : Fig. 10(b) 

Prediction obtained from PCI design method is not affected by SH , regardless of dha /1 , as the 

predicted failure plane is formed along the concrete strut of nib. Shear capacities obtained from 

STM and mechanism analysis increase with the increase of SH  up to a certain limit ( SH  = 0.1 

and 0.05 for STM and mechanism analysis, respectively) as failure is governed by yielding of 

hanger reinforcement. However, failure is predicted to occur in concrete strut of nib with the 

increase of SH , as a result, the shear capacities obtained by STM and mechanism analysis are 

independent on SH , similar to PCI design method. 

Horizontal shear reinforcement index h  of nib: Fig. 10(c) 

The shear capacity obtained from PCI design method increases with the increase of h , regardless 

of dha /1 , when failure occurs along the concrete strut of nib. The prediction obtained from STM is 

independent on h , as the shear transfer mechanism of shear reinforcement is not considered. 

Similarly, prediction obtained from the mechanism analysis is independent on h  for dapped-end 

beams having h  > 0.005 as failure is shifted from concrete strut of nib to concrete strut of full 

depth for beams. 
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Effect of Horizontal load 

Fig. 11 presents the effect of horizontal tensile load index N  on the critical failure plane and 

corresponding normalized shear capacity of dapped-end beams. The shear capacity predicted from 

PCI design method is not affected by N  as the predicted failure occurs along the concrete strut of 

nib. On the other hand, the predictions obtained from mechanism analysis and STM decrease with 

the increase of N . In particular, a far much less decreasing rate of shear capacity is predicted from 

mechanism analysis with the arrangement of horizontal shear reinforcement of nib. This trend is 

also confirmed by test results of Mattock and Chan
3
. 

CONCLUSIONS 

A mechanism analysis based on upper-bound theorem is proposed to predict the critical failure 

plane and corresponding shear capacity of reinforced concrete dapped-end beams. Failure modes 

observed in experiments are idealized and studied to obtain the shear strength of dapped-end beams. 

Comparisons between predictions from different techniques and test results of 47 dapped-end 

beams showed that the shear capacity of dapped-end beams is highly underestimated by PCI design 

method and the simplified strut-and-tie model based on ACI 318-05, whereas adequately predicted 

by the proposed mechanism analysis. The mean and standard deviation of the ratio between 

measured shear capacity and prediction by the mechanism analysis are 0.95 and 0.13, respectively. 

PCI design method does not reasonably represent the influence of shear span-to-overall depth ratio 

of beam, the amount of hanger, longitudinal, and shear reinforcing bars in nib, and horizontal tensile 
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loads on the shear capacity of dapped-end beams. The trend of shear capacity of dapped-end beams 

against different parameters predicted by the developed mechanism analysis was similar to that 

obtained from the strut and tie model. Both the developed mechanism analysis and strut and tie 

model clearly show that the critical failure plane of dapped-end beams can be altered by different 

parameters. Furthermore, they point out that the shear capacity of dapped-end beams can be 

influenced by the shear span-to-overall depth ratio when failure occurs along diagonal cracks 

originating at the bottom corner of full depth beam, though the shear span-to-overall depth ratio is 

ignored by PCI design method and is not considered in most test specimens. 
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NOTATION 

hA  = area of horizontal shear reinforcement of nib 

sA  = area of longitudinal bottom reinforcement  

SHA  = area of hanger reinforcement  
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vA  = area of vertical shear reinforcement  

a  = shear span  

1a  = effective shear span of nib 

b  = width of beam section 

bc  = cover thickness of longitudinal reinforcement in full depth beam 

tc  = cover thickness of longitudinal reinforcement in nib 

dd  = effective depth of nib 

h  = overall depth of beam section 

dh  = overall depth of nib 

'

cf  = concrete compressive strength 

yhf  = yield strength of horizontal shear reinforcement of nib 

ysf  = yield strength of longitudinal reinforcement of nib 

ySHf  = yield strength of hanger reinforcement 

yvf  = yield strength of vertical shear reinforcement of nib 

L  = length of yield line 

pl  = width of loading or support plate 

nM  = nominal moment capacity of nib 

N  = thorizontal tensile force applied at beam support 

r  = distance between the midpoint of the chord of the yield line and the instantaneous center 

sr  = distance between the reinforcing bar crossing a yield line and the instantaneous center 
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nV  = shear capacity o dapped-end beams 

cW  = internal energy dissipated in concrete 

EW  = external work done by applied load 

IW  = total internal energy dissipated in yield line 

sW  = internal energy dissipated in reinforcement 

sbw  = width of bottom strut of full depth beam 

stw  = width of nib concrete strut 

  = angle between the relative displacement at the midpoints of the chord and yield line 

s  = angle between the relative displacement of the reinforcement about I.C. and the 

reinforcement crossing a yield line 

  = angle between yield line and longitudinal axis 

  = angle between shear reinforcement and the axis of cocrete strut of nib 

cs  = ratio between measured and predicted shear capacities 

  = relative displacement vector across a yield line 

s  = relative displacement vector of reinforcement crossing a yield line 

  = modification factor to account for the use of lightweight concrete 

  = friction coefficient of concrete 

  = angle between concrete strut and longitudinal axis of beam 

h  = horizontal shear reinforcement index 












'

c

yhh

bhf

fA
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N  = horizontal load index 

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s  = longitudinal reinforcement index of nib 
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SH  = hanger reinforcement index 
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v  = vertical shear reinforcement index 



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

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e  = effectiveness factor of concrete 

  = relative rotational displacement of rigid block I to rigid block II about the instantaneous 

cednter 
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Table 1-Comparison of measured and predicted shear capacities of dapped-end beams. 

Researcher specimen 

'

cf  

(MPa) 

b  

(mm) 

h  

(mm) 

dh  

(mm) 

0a  

(mm) 
ha /  dha /1  SH  s  v  h  N  

nV  (kN) .. )/()( prenExpn VV  

Exp. PCI STM 
Mech. 

anal. 
PCI STM 

Mech. 

anal. 

Mattock 

and Chan 

1A 34 127 610 305 114 0.8 0.6 0.074 0.026 0.000 0.011 0.000 144 64 94 147 2.25 1.53 0.98 

1B 31 127 610 305 114 0.8 0.6 0.084 0.099 0.000 0.025 0.056 191 91 141 182 2.10 4.81 1.05 

2A 33 127 610 305 114 0.8 0.6 0.051 0.040 0.000 0.023 0.000 178 94 93 179 1.90 2.31 1.00 

2B 31 127 610 305 114 0.8 0.6 0.056 0.098 0.000 0.025 0.047 169 92 95 166 1.84 11.91 1.02 

3A 37 127 610 305 114 0.8 0.6 0.057 0.035 0.000 0.020 0.000 216 94 116 225 2.30 2.24 0.96 

3B 32 127 610 305 114 0.8 0.6 0.069 0.102 0.000 0.025 0.051 177 95 121 188 1.86 6.27 0.94 

4A 32 127 610 305 114 1.3 0.6 0.068 0.041 0.000 0.023 0.000 189 90 142 177 2.10 1.52 1.07 

4B 29 127 610 305 114 1.3 0.6 0.075 0.109 0.000 0.026 0.055 177 92 174 179 1.92 2.12 0.99 

Lu et al. 

1 34 200 600 300 80 0.7 0.5 0.134 0.097 0.000 0.026 0.000 561 157 403 540 3.57 1.65 1.04 

2 63 200 600 300 80 0.7 0.5 0.087 0.053 0.000 0.014 0.000 705 176 490 711 4.01 1.80 0.99 

3 69 200 600 300 80 0.7 0.5 0.079 0.048 0.000 0.013 0.000 713 180 490 727 3.96 1.82 0.98 

4 34 200 600 300 160 0.9 0.8 0.087 0.097 0.000 0.026 0.000 360 157 178 380 2.29 2.02 0.95 

5 63 200 600 300 160 0.9 0.8 0.058 0.053 0.000 0.014 0.000 513 176 245 549 2.91 2.22 0.93 

6 69 200 600 300 160 0.9 0.7 0.052 0.048 0.000 0.013 0.000 521 180 255 562 2.89 2.22 0.93 

7 34 200 600 300 80 0.7 0.5 0.108 0.065 0.000 0.026 0.000 458 157 401 529 2.92 1.62 0.87 

8 63 200 600 300 80 0.7 0.5 0.058 0.035 0.000 0.014 0.000 599 176 381 684 3.40 2.16 0.88 

9 69 200 600 300 80 0.7 0.5 0.052 0.032 0.000 0.013 0.000 642 180 381 700 3.57 2.32 0.92 

10 34 200 600 300 160 0.9 0.8 0.073 0.065 0.000 0.026 0.000 291 157 167 320 1.85 1.85 0.91 

11 63 200 600 300 160 0.9 0.8 0.040 0.035 0.000 0.014 0.000 351 176 161 392 1.99 2.28 0.90 

12 69 200 600 300 160 0.9 0.8 0.036 0.032 0.000 0.013 0.000 392 180 161 394 2.18 2.54 0.99 
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Wang and 

Guo 

B1.11 11 214 370 170 75 1.3 0.9 0.182 0.118 0.049 0.000 0.000 59 61 85 63 0.97 0.69 0.93 

B1.12 11 214 370 164 75 1.2 0.8 0.027 0.118 0.049 0.000 0.000 42 24 21 46 1.73 2.61 0.91 

B1.21* 11 220 370 190 75 1.3 1.2 0.316 0.122 0.050 0.000 0.000 65 62 63 79 1.04 1.03 0.83 

B1.22 11 220 370 160 75 1.1 1.0 0.078 0.122 0.050 0.000 0.000 73 60 43 86 1.23 1.88 0.85 

B2.11 13 150 300 150 75 0.8 0.7 0.041 0.180 0.074 0.000 0.000 35 24 13 58 1.42 2.71 0.60 

B2.12 13 150 300 150 75 0.8 1.2 0.041 0.180 0.074 0.000 0.000 32 24 4 44 1.30 5.09 0.72 

B2.21 13 150 300 150 75 0.8 1.0 0.083 0.180 0.074 0.000 0.000 55 49 12 50 1.13 3.44 1.11 

B2.22 13 150 300 150 75 0.8 1.1 0.083 0.180 0.074 0.000 0.000 66 49 8 46 1.35 5.34 1.42 

B2.31* 13 150 300 150 75 0.8 0.9 0.360 0.180 0.074 0.000 0.000 76 55 42 79 1.39 1.44 0.96 

B2.32* 13 150 300 150 75 0.8 1.2 0.360 0.180 0.074 0.000 0.000 65 55 35 65 1.19 1.23 1.01 

B3.11 18 150 315 160 75 1.0 0.8 0.063 0.124 0.051 0.000 0.000 60 54 25 68 1.11 2.30 0.88 

B3.12 18 150 315 160 75 1.0 0.8 0.078 0.124 0.051 0.000 0.000 70 57 37 73 1.22 2.00 0.95 

B3.21 18 150 300 150 75 1.0 0.9 0.066 0.130 0.053 0.000 0.000 66 54 26 64 1.22 2.47 1.04 

B3.22 18 150 300 150 75 1.0 1.0 0.066 0.130 0.053 0.000 0.000 50 54 18 54 0.93 2.28 0.93 

B3.31 16 150 305 150 75 1.0 0.8 0.133 0.145 0.059 0.000 0.000 52 55 52 63 0.94 1.04 0.83 

B3.32 16 150 305 150 75 1.0 0.9 0.267 0.145 0.059 0.000 0.000 63 55 72 70 1.14 0.87 0.91 

B3.41 16 150 310 100 75 1.0 1.1 0.033 0.142 0.058 0.000 0.000 27 24 15 37 1.10 1.89 0.73 

B3.42 16 150 310 100 75 1.0 1.1 0.033 0.142 0.058 0.000 0.000 26 24 15 35 1.08 1.87 0.75 

B3.51* 16 150 305 155 75 1.0 0.8 0.321 0.145 0.059 0.000 0.000 79 56 76 71 1.40 1.20 1.11 

B3.52* 16 150 305 150 75 1.0 0.8 0.321 0.145 0.059 0.000 0.000 75 55 71 65 1.35 1.13 1.16 

B3.61 15 150 300 150 75 1.0 1.0 0.294 0.155 0.063 0.000 0.000 63 56 74 58 1.13 0.84 1.10 

B3.62 15 150 300 150 75 1.0 0.8 0.149 0.155 0.063 0.000 0.000 93 56 61 91 1.66 1.67 1.03 

B3.71* 15 150 300 150 75 1.0 0.8 0.178 0.155 0.063 0.063 0.000 90 84 69 92 1.07 1.39 0.97 

B3.72* 15 150 300 150 75 1.0 0.8 0.178 0.155 0.063 0.063 0.000 116 92 68 97 1.26 2.00 1.20 

Taher GroupⅠ-0 24 200 300 150 200 2.2 1.5 0.019 0.03 0.019 0.031 0.000 37.5 21 18 45.7 1.79 2.37 0.95 
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GroupⅢ-0 25 200 300 150 200 2.2 1.5 0.019 0.03 0.019 0.000 0.000 35 21 18 36.1 1.67 1.82 0.13 

GroupⅣ-0 24 200 300 150 200 2.2 1.5 0.019 0.03 0.000 0.031 0.000 34.5 21 18 41.0 1.64 0.77 0.14 

Mean                 1.84 2.37 0.95 

Standard deviation                 0.83 1.82 0.13 

Coefficient of 

variation 
                0.45 0.77 0.14 

Note : * indicates specimens having 45o bent-up shear reinforcement at the interface between nib and full depth of beam. 
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Fig. 1- Potential failure planes of dapped-end beams in PCI design handbook. 
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Fig. 2- Effect of s  on 
'/ cn bhfV  for different failure planes based on PCI design method.
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Fig. 3- Schematic strut-and-tie model of dapped-end beams based on ACI 318-05. 
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Fig. 4- Effect of s  on 
'/ cn bhfV  using strut-and-tie model based on ACI 318-05.
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(b) Failure plane ② 
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(c) Failure plane ③ 
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(d) Failure plane ④ 
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(e) Failure plane ⑤ 

Fig. 5- Potential failure mechanisms of dapped end beams. 
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Fig. 6- Reinforcing bar j crossing yield line i. 
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Fig. 7- Effect of s  on bhfV cn

'/  of dapped-end beams using the mechanism analysis. 



 33 

0

2

4

6

8

10

12

14

0.4 0.6 0.8 1.0 1.2 1.4 1.6

a 1/h d

(V
n

)E
x

p
./(

V
n

)P
re

.
PCI design handbook

STM (ACI 318-05)

Mechanism analysis

 

(a) Effect shear span-to-nib depth ratio dha /1 . 
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(b) Hanger reinforcement index SH . 

Fig. 8- Comparison of test results with proposed models. 
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(a) Influence of ha / . 
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(b) Influence of dha /1 . 
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(c) Influence of hhd / . 

Fig. 9- Influence of geometrical dimensions on critical failure plane and shear capacity. 
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(a) Influence of s . 
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(b) Influence of SH . 
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(c) Influence of h . 

Fig. 10- Influence of dapped end beam reinforcement on critical failure plane and shear 

capacity. 
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Fig. 11- Influence of N  on shear capacity. 


