51 research outputs found

    Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

    Get PDF
    The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments

    Spatial and Temporal Dynamics of Hepatitis B Virus D Genotype in Europe and the Mediterranean Basin

    Get PDF
    Hepatitis B virus genotype D can be found in many parts of the world and is the most prevalent strain in south-eastern Europe, the Mediterranean Basin, the Middle East, and the Indian sub-continent. The epidemiological history of the D genotype and its subgenotypes is still obscure because of the scarcity of appropriate studies. We retrieved from public databases a total of 312 gene P sequences of HBV genotype D isolated in various countries throughout the world, and reconstructed the spatio-temporal evolutionary dynamics of the HBV-D epidemic using a Bayesian framework

    Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies : Spiroplasma is present in both laboratory and natural populations

    Get PDF
    Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the “Wigglesworthia-Sodalis-Wolbachia dogma” operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipe

    Local environmental conditions shape generalist but not specialist components of microbial metacommunities in the Baltic Sea

    No full text
    Marine microbes exhibit biogeographical patterns linked with fluxes of matter and energy. Yet, knowledge of the mechanisms shaping bacterioplankton community assembly across temporal scales remains poor. We examined bacterioplankton 16S rRNA gene fragments obtained from Baltic Sea transects to determine phylogenetic relatedness and assembly processes coupled with niche breadth. Communities were phylogenetically more related over time than expected by chance, albeit with considerable temporal variation. Hence, habitat filtering, i.e., local environmental conditions, rather than competition structured bacterioplankton communities in summer but not in spring or autumn. Species sorting (SS) was the dominant assembly process, but temporal and taxonomical variation in mechanisms was observed. For May communities, Cyanobacteria, Actinobacteria, Alpha- and Betaproteobacteria exhibited SS while Bacteroidetes and Verrucomicrobia were assembled by SS and mass effect. Concomitantly, Gammaproteobacteria were assembled by the neutral model and patch dynamics. Temporal variation in habitat filtering and dispersal highlights the impact of seasonally driven reorganization of microbial communities. Typically abundant Baltic Sea populations such as the NS3a marine group (Bacteroidetes) and the SAR86 and SAR11 clade had the highest niche breadth. The verrucomicrobial Spartobacteria population also exhibited high niche breadth. Surprisingly, variation in bacterioplankton community composition was regulated by environmental factors for generalist taxa but not specialists. Our results suggest that generalists such as NS3a, SAR86, and SAR11 are reorganized to a greater extent by changes in the environment compared to specialists and contribute more strongly to determining overall biogeographical patterns of marine bacterial communities

    Unscrambling cyanobacteria community dynamics related to environmental factors

    No full text
    Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly timeseries during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An \u201cepidemic population structure\u201d (dominance of a single cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this cluster simultaneously occurred with opportunistic clusters/OTUs, e.g., Nodularia spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formed a consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocyanobacteria and the bloom of filamentous/colonial clusters. These findings highlight that if environmental conditions can partially explain the presence of opportunistic picocyanobacteria, microbial and trophic interactions with filamentous/colonial cyanobacteria should also be considered as potential shaping factors for singlecelled communities. Regional climate change scenarios in the Baltic Sea predict environmental shifts leading to higher temperature and lower salinity; conditions identified here as favorable for opportunistic filamentous/colonial cyanobacteria. Altogether,the diversity and complexity of cyanobacterial communities reported here is far greater than previously known, emphasizing the importance of microbial interactions between filamentous and picocyanobacteria in the context of environmental disturbance

    Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers

    No full text
    Metapopulation theory developed in terrestrial ecology provides applicable frameworks for interpreting the role of local and regional processes in shaping species distribution patterns. Yet, empirical testing of metapopulation models on microbial communities is essentially lacking. We determined regional bacterioplankton dynamics from monthly transect sampling in the Baltic Sea Proper using 16S rRNA gene sequencing. A strong positive trend was found between local relative abundance and occupancy of populations. Notably, the occupancy-frequency distributions were significantly bimodal with a satellite mode of rare endemic populations and a core mode of abundant cosmopolitan populations (e.g. Synechococcus, SAR11 and SAR86 clade members). Temporal changes in population distributions supported several theoretical frameworks. Still, bimodality was found among bacterioplankton communities across the entire Baltic Sea, and was also frequent in globally distributed datasets. Datasets spanning waters with widely different physicochemical characteristics or environmental gradients typically lacked significant bimodal patterns. When such datasets were divided into subsets with coherent environmental conditions, bimodal patterns emerged, highlighting the importance of positive feedbacks between local abundance and occupancy within specific biomes. Thus, metapopulation theory applied to microbial biogeography can provide novel insights into the mechanisms governing shifts in biodiversity resulting from natural or anthropogenically induced changes in the environmen

    Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment

    No full text
    Predicted increases in runoff of terrestrial dissolved organic matter (DOM) and sea surface temperatures implicate substantial changes in energy fluxes of coastal marine ecosystems. Despite marine bacteria being critical drivers of marine carbon cycling, knowledge of compositional responses within bacterioplankton communities to such disturbances is strongly limited. Using 16S rRNA gene pyrosequencing, we examined bacterioplankton population dynamics in Baltic Sea mesocosms with treatments combining terrestrial DOM enrichment and increased temperature. Among the 200 most abundant taxa, 62 % either increased or decreased in relative abundance under changed environmental conditions. For example, SAR11 and SAR86 populations proliferated in combined increased terrestrial DOM/temperature mesocosms, while the hgcI and CL500-29 clades (Actinobacteria) decreased in the same mesocosms. Bacteroidetes increased in both control mesocosms and in the combined increased terrestrial DOM/temperature mesocosms. These results indicate considerable and differential responses among distinct bacterial populations to combined climate change effects, emphasizing the potential of such effects to induce shifts in ecosystem function and carbon cycling in the future Baltic Sea.Supplement: 3 Special Issue: SI</p
    corecore