636 research outputs found

    Microemprendimientos en agricultura ecológica y mercado slow food

    Get PDF
    En este artículo se presenta una investigación de carácter cualitativo que se ha llevado a cabo sobre una amplia muestra de microemprendedores en el estado mexicano de Yucatán; los cuales, motivados por el consumo de productos saludables y de carácter orgánico en el campo de la agroecología, se han iniciado en sus negocios, basados, principalmente, en la producción y comercialización de este tipo de productos de origen ganadero o agrícola, pero fundamentalmente de este último. En concreto, se quiere exponer, más detalladamente, la opinión que tienen estos microemprendedores agroecológicos sobre los productores de su entorno, es decir, sobre la competencia en el mercado yucateco, indagando, asimismo, en relación con la existencia de redes sociales e interacción social entre los emprendedores, y con las formas de cooperación que existen entre unos y otros. This article presents a qualitative investigation that has been carried out on a large sample of microentrepreneurs in the Mexican state of Yucatan; which, motivated by the consumption of healthy and organic products in the field of agroecology, have started in their businesses, based mainly on the production and marketing of this type of products of livestock or agricultural origin, but mainly from the last batch. Specifically, we want to expose, in more detail, the opinion that these agroecological micro-entrepreneurs have about the producers in their environment, that is, about the competition in the Yucatecan market, also inquiring about the existence of social networks and social interaction among entrepreneurs; and about the forms o f cooperation that exist between them

    The first crystal structure of human RNase6 reveals a novel substrate binding and cleavage site arrangement

    Get PDF
    Human RNase 6 is a cationic secreted protein that belongs to the RNase A superfamily. Its expression is induced in neutrophils and monocytes upon bacterial infection, suggesting a role in host defence. We present here the crystal structure of RNase 6 obtained at a 1.72 Å resolution, being the first report for the protein threedimensional structure and thereby setting the basis for functional studies. The structure shows an overall kidney shaped globular fold shared with the other known family members. Three sulphate anions bound to RNase 6 were found, interacting to residues at the main active site (His15, His122 and Gln14) and cationic surface exposed residues (His36, His39, Arg66 and His67). Kinetic characterization, together with prediction of protein -nucleotide complexes by molecular dynamics, was applied to analyse the RNase 6 substrate nitrogenous base and phosphate selectivity. Our results reveal that, although RNase 6 is a moderate catalyst in comparison to the pancreatic RNase type, its structure includes lineage specific features that facilitate its activity towards polymeric nucleotide substrates. In particular, enzyme interactions at the substrate 5' end can provide an endonuclease type cleavage pattern. Interestingly, the RNase 6 crystal structure revealed a novel secondary active site conformed by the His36-His39 dyad that facilitates the polynucleotide substrate catalysis

    Long-range transfer of electron-phonon coupling in oxide superlattices

    Full text link
    The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is currently the subject of intense research. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, present formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor YBa2Cu3O7\bf YBa_2 Cu_3 O_7 and the colossal-magnetoresistance compound La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} that suggests a new approach to this problem. We find that a rotational mode of the MnO6_6 octahedra in La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} experiences pronounced superconductivity-induced lineshape anomalies, which scale linearly with the thickness of the YBa2Cu3O7\bf YBa_2 Cu_3 O_7 layers over a remarkably long range of several tens of nanometers. The transfer of the electron-phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron-phonon interaction in complex materials.Comment: 13 pages, 4 figures. Revised version to be published in Nature Material

    Rebooting the human mitochondrial phylogeny: an automated and scalable methodology with expert knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA is an ideal source of information to conduct evolutionary and phylogenetic studies due to its extraordinary properties and abundance. Many insights can be gained from these, including but not limited to screening genetic variation to identify potentially deleterious mutations. However, such advances require efficient solutions to very difficult computational problems, a need that is hampered by the very plenty of data that confers strength to the analysis.</p> <p>Results</p> <p>We develop a systematic, automated methodology to overcome these difficulties, building from readily available, public sequence databases to high-quality alignments and phylogenetic trees. Within each stage in an autonomous workflow, outputs are carefully evaluated and outlier detection rules defined to integrate expert knowledge and automated curation, hence avoiding the manual bottleneck found in past approaches to the problem. Using these techniques, we have performed exhaustive updates to the human mitochondrial phylogeny, illustrating the power and computational scalability of our approach, and we have conducted some initial analyses on the resulting phylogenies.</p> <p>Conclusions</p> <p>The problem at hand demands careful definition of inputs and adequate algorithmic treatment for its solutions to be realistic and useful. It is possible to define formal rules to address the former requirement by refining inputs directly and through their combination as outputs, and the latter are also of help to ascertain the performance of chosen algorithms. Rules can exploit known or inferred properties of datasets to simplify inputs through partitioning, therefore cutting computational costs and affording work on rapidly growing, otherwise intractable datasets. Although expert guidance may be necessary to assist the learning process, low-risk results can be fully automated and have proved themselves convenient and valuable.</p

    Hsp90β inhibition modulates nitric oxide production and nitric oxide-induced apoptosis in human chondrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hsp90β is a member of the Hsp90 family of protein chaperones. This family plays essential roles in the folding, maturation and activity of many proteins that are involved in signal transduction and transcriptional regulation. The role of this protein in chondrocytes is not well understood, although its increase in osteoarthritic cells has been reported. The present study aimed to explore the role of Hsp90β in key aspects of OA pathogenesis.</p> <p>Methods</p> <p>Human OA chondrocytes were isolated from cartilage obtained from patients undergoing joint replacement surgery, and primary cultured. Cells were stimulated with proinflammatory cytokines (IL-1β or TNF-α) and nitric oxide donors (NOC-12 or SNP). For Hsp90β inhibition, two different chemical inhibitors (Geldanamycin and Novobiocin) were employed, or siRNA transfection procedures were carried out. Gene expression was determined by real-time PCR, apoptosis was quantified by flow cytometry and ELISA, and nitric oxide (NO) production was evaluated by the Griess method. Indirect immunofluorescence assays were performed to evaluate the presence of Hsp90β in stimulated cells.</p> <p>Results</p> <p>Hsp90β was found to be increased by proinflammatory cytokines. Inhibition of Hsp90β by the chemicals Geldanamycin (GA) and Novobiocin (NB) caused a dose-dependent decrease of the NO production induced by IL-1β in chondrocytes, up to basal levels. Immunofluorescence analyses demonstrate that the NO donors NOC-12 and SNP also increased Hsp90β. Chemical inhibition or specific gene silencing of this chaperone reduced the DNA condensation and fragmentation, typical of death by apoptosis, that is induced by NO donors in chondrocytes.</p> <p>Conclusions</p> <p>The present results show how Hsp90β modulates NO production and NO-mediated cellular death in human OA chondrocytes.</p

    Efficacy of Anakinra in Refractory Adult-Onset Still's Disease: Multicenter Study of 41 Patients and Literature Review

    Get PDF
    Adult-onset Still's disease (AOSD) is often refractory to standard therapy. Anakinra (ANK), an interleukin-1 receptor antagonist, has demonstrated efficacy in single cases and small series of AOSD. We assessed the efficacy of ANK in a series of AOSD patients. Multicenter retrospective open-label study. ANK was used due to lack of efficacy to standard synthetic immunosuppressive drugs and in some cases also to at least 1 biologic agent. Forty-one patients (26 women/15 men) were recruited. They had a mean age of 34.4 ± 14 years and a median [interquartile range (IQR)] AOSD duration of 3.5 [2-6] years before ANK onset. At that time the most common clinical features were joint manifestations 87.8%, fever 78%, and cutaneous rash 58.5%. ANK yielded rapid and maintained clinical and laboratory improvement. After 1 year of therapy, the frequency of joint and cutaneous manifestations had decreased to 41.5% and to 7.3% respectively, fever from 78% to 14.6%, anemia from 56.1% to 9.8%, and lymphadenopathy from 26.8% to 4.9%. A dramatic improvement of laboratory parameters was also achieved. The median [IQR] prednisone dose was also reduced from 20 [11.3-47.5] mg/day at ANK onset to 5 [0-10] at 12 months. After a median [IQR] follow-up of 16 [5-50] months, the most important side effects were cutaneous manifestations (n = 8), mild leukopenia (n = 3), myopathy (n = 1), and infections (n = 5). ANK is associated with rapid and maintained clinical and laboratory improvement, even in nonresponders to other biologic agents. However, joint manifestations are more refractory than the systemic manifestations

    Stem cell function and stress response are controlled by protein synthesis.

    Get PDF
    Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here we show that mouse skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumorigenesis. Mechanistically, we show that inhibition of post-transcriptional cytosine-5 methylation locks tumour-initiating cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour.This work was funded by Cancer Research UK (CR-UK), Worldwide Cancer Research, the Medical Research Council (MRC), the European Research Council (ERC), and EMBO. Research in Michaela Frye's laboratory is supported by a core support grant from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Cambridge Stem Cell Institute.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1828

    Differential Inhibitor Sensitivity between Human Kinases VRK1 and VRK2

    Get PDF
    Human vaccinia-related kinases (VRK1 and VRK2) are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK). The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31–8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31–8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore